- •1. Представление о науке физиология растений. Объекты, предметы, Организация физиологических исследований.
- •2. История возникновения физиологии растений. Основные направления физиологии растений.
- •3. Особенности растительной клетки. Основные составляющие, мембранные и немембранные органеллы.
- •4. Строение и функции клеточной стенки. Хозяйственное значение.
- •5. Строение, состав и функции ядра.
- •6. Состав и органеллы цитоплазмы, их функции.
- •7. Основные химические составляющие клетки: нуклеиновые кислоты, белки, липиды, углеводы.
- •8. Белки. Состав, структура (первичная, вторичная, третичная, четвертичная). Функции белков. Ферменты и коферменты.
- •9. Липиды. Физико-химические свойства. Группы липидов. Свойства фосфолипидов.
- •10. Клеточные мембраны: состав, свойства и функции.
- •11. Пассивный транспорт веществ через мембраны. Диффузия. Осмос. Электрофорез. Электрохимический коэффициент.
- •12. Активный транспорт веществ через мембраны. Белки-переносчики. Биологические насосы
- •13. Осмотическое давление. Формула, единицы измерения.
- •14. Тургор, тургорное давление, тургорное натяжение, состояние насыщения клетки водой.
- •15. Функции воды в растении. Водный обмен, водный баланс, водный дефицит. Роль корней. Влияние внешних факторов на поступление воды в растение.
- •16. Выделение воды растениями. Транспирация и гуттация. Влияние минерального питания на транспирацию.
- •17. Транспорт воды по растению. Верхний и нижний двигатель водного тока.
- •18.Фотосинтез – определение, общая реакция. Кпд фотосинтеза для разных групп растений.
- •19. Значение фотосинтеза для биосферы.
- •20. Специализированный орган и органелла фотосинтеза – лист и хлоропласт. Пигменты фотосинтеза. Спектры поглощения света.
- •21. Световая и темновая фазы фотосинтеза. Биологический смысл, основные образующиеся вещества. Цепи переноса электронов в хлоропластах. Фотофосфорилирование в световой фазе.
- •22. Темновая фаза фотосинтеза - с3-путь – образование углеводов
- •23. Интенсивность фотосинтеза (иф). Иф с№ и с4-растений. Факторы, влияющие на фотосинтез.
- •24. Дыхание, определение. Дыхательные субстраты. Уравнение дыхания на примере глюкозы.
- •25. Анаэробное дыхание – гликолиз, брожение
- •26. Аэробное дыхание – цикл трикарбоновых кислот (цтк). Роль дыхания в метаболизме.
- •27. Влияние факторов на дыхание
- •28. Определение элементов питания. Элементы-органогены. Зольные вещества. Макро- и микроэлементы
- •29. Особенности поглощения эп корневой системой растений. Формы поглощения эп.
- •30. Механизмы поглощения эп – диффузия, ионообменная адсорбция. Ритм поглощения эп.
- •31. Роль основных эп в обмене веществ – n, p, k, Ca
- •32. Влияние факторов среды на поглощение эп.
- •33. Онтогенез, определение. Классификация по продолжительности жизни и возрастным периодам.
- •34. Рост и развитие, показатели процессов. Меристемы – основа роста.
- •35. Фитогормоны, группы, основное действие. Применение в растениеводстве.
- •36. Периодичность и ритмичность роста. Закон большого периода роста.
- •37. Влияние света на рост и развитие растений.
- •38. Влияние минерального питания на развитие растений.
- •39. Понятие об адаптации растений и ее формах, об устойчивости растений и ее видах.
- •40. Холодостойкость растений, ее диагностика и способы повышения.
- •41. Морозоустойчивость растений, ее диагностика и способы повышения.
- •42. Зимостойкость растений, ее диагностика и способы повышения.
- •43. Жароустойчивость растений, его диагностика и способы повышения.
- •44. Засухоустойчивость растений, ее диагностика и способы повышения.
- •45. Солеустойчивость растений, ее диагностика и возможности повышения.
36. Периодичность и ритмичность роста. Закон большого периода роста.
Периодичность роста характерна для многолетних, озимых и двулетних форм, у которых период активного роста прерывается периодом покоя.
Ритмичность роста - чередование замедленного и интенсивного роста клетки, органа, организма - бывает суточная, сезонная - является результатом взаимодействия внутренних и внешних факторов.
Закон большого периода роста - Скорость линейного роста (массы) в онтогенезе клетки, ткани, любого органа, растения в целом непостоянна и может быть выражена сигмоидной кривой (кривой Сакса). Линейная фаза роста была названа Саксом большим периодом роста. Выделяют 4 участка (фазы) кривой:
Начальный период медленного роста (лаг-период).
Лог-период, большой период роста по Саксу)
Фаза замедления роста.
Стационарное состояние (окончание роста).
37. Влияние света на рост и развитие растений.
Одно из основных условий существования всех растений – свет. Ведь только на свету в листьях в результате фотосинтеза образуются сложные органические вещества, необходимые для роста и развития живого организма. Для образования органических веществ (сахара и крахмала) из углекислого газа и воды нужна энергия, и хлоропласты получают ее в виде энергии солнечного луча.
В зеленом листе происходит и процесс дыхания, то есть окисление органического вещества, образовавшегося при фотосинтезе. Он совершается круглые сутки, фотосинтез же – только днем на свету, но намного интенсивней, чем дыхание. Окисляясь, органическое вещество, выделяет ту энергию, которую оно получило от солнечного света в момент своего образования. Эта энергия используется растением для роста, развития и других процессов жизнедеятельности.
Таким образом, энергия, поглощенная растением при фотосинтезе, не исчезает, а лишь переходит из одной формы в другую: световая – в химическую, химическая – в механическую или тепловую. Так в жизни растения осуществляется один из законов природы – закон сохранения энергии.
38. Влияние минерального питания на развитие растений.
Минеральное питание – это совокупность процессов поглощения, передвижения и усвоения химических элементов необходимых для жизни растительных организмов, в форме ионов минеральных солей.
Минеральные элементы делятся на:
- макроэлементы, > 0,01% (углерод – С, кислород – О, водород – Н, азот - N, фосфор – P, калий – K, кальций - Ca, сера – S, магний – Mg).
- микроэлементы,<0,01% (марганец – Mn, бор – B, цинк – Zn, медь – Cu, молибден – Mo, железо – Fe, хлор – Cl).
Азот. Доступные формы – нитратная NO3 и аммонийная NH4. Этот элемент входит в состав аминокислот, аминов, белков и др. органических соединений и является самым дефицитным элементом питания.
Фосфор. Доступные формы – анионы ортофосфатов Н2РО4 и РО4. Фосфор входит в состав нуклеиновых кислот, белков, фосфолипидов, нуклеотидов растения более чувствительны к недостатку фосфора на ранних этапах развития.
Калий. Доступная форма – катионы калия. В клетках растений концентрация калия в 100 – 1000 раз больше его содержания в воде. Максимальное количество калия поглощается растениями в период наращивания вегетативной массы. Дефицит калия тормозит процессы деления и размножения клеток, что приводит к появлению розеточных форм.
Кальций. Доступная форма – катионы Са2+.в клетках однодольных растений Са больше, чем в клетках двудольных. В растениях Са накапливается в старых листьях.
Марганец .Поступает в растение в виде иона Mn2+ Недостаток марганца – вызывает деформацию листьев и образованию хлоротичных или мертвых участках.
Бор. Поступает в растение в виде аниона борной кислоты – BO3. Увеличивает количество цветков и плодов. Без этого элемента нарушается созревания семян. Необходим растениям в течении всей жизни.
Цинк. Поступает в растение в виде анионов Zn2+.
Медь. Поступает в растение в виде ионов Cu2+ и Cu+. Дефицит меди – вызывает задержку роста и цветение, хлороз, потерю тургора, заведание и ранний листопад.
Молибден.Поступает в растение в виде аниона МоО4. Концентрируется в молодых растущих частях. Особая роль в азотном обмене растений.
Железо. Большая часть находится в хлоропластах. Недостаток железа – тормозит фотосинтез и дыхание, вызывает хлороз, развитие белых листьев и быстрое их опадение.
Хлор.Поступает в растение в виде Cl-. Недостаток хлора проявляется редко и наблюдается только на очень щелочных почвах. Нехватка хлора вызывает нарушение водного обмена.
