- •1. Представление о науке физиология растений. Объекты, предметы, Организация физиологических исследований.
- •2. История возникновения физиологии растений. Основные направления физиологии растений.
- •3. Особенности растительной клетки. Основные составляющие, мембранные и немембранные органеллы.
- •4. Строение и функции клеточной стенки. Хозяйственное значение.
- •5. Строение, состав и функции ядра.
- •6. Состав и органеллы цитоплазмы, их функции.
- •7. Основные химические составляющие клетки: нуклеиновые кислоты, белки, липиды, углеводы.
- •8. Белки. Состав, структура (первичная, вторичная, третичная, четвертичная). Функции белков. Ферменты и коферменты.
- •9. Липиды. Физико-химические свойства. Группы липидов. Свойства фосфолипидов.
- •10. Клеточные мембраны: состав, свойства и функции.
- •11. Пассивный транспорт веществ через мембраны. Диффузия. Осмос. Электрофорез. Электрохимический коэффициент.
- •12. Активный транспорт веществ через мембраны. Белки-переносчики. Биологические насосы
- •13. Осмотическое давление. Формула, единицы измерения.
- •14. Тургор, тургорное давление, тургорное натяжение, состояние насыщения клетки водой.
- •15. Функции воды в растении. Водный обмен, водный баланс, водный дефицит. Роль корней. Влияние внешних факторов на поступление воды в растение.
- •16. Выделение воды растениями. Транспирация и гуттация. Влияние минерального питания на транспирацию.
- •17. Транспорт воды по растению. Верхний и нижний двигатель водного тока.
- •18.Фотосинтез – определение, общая реакция. Кпд фотосинтеза для разных групп растений.
- •19. Значение фотосинтеза для биосферы.
- •20. Специализированный орган и органелла фотосинтеза – лист и хлоропласт. Пигменты фотосинтеза. Спектры поглощения света.
- •21. Световая и темновая фазы фотосинтеза. Биологический смысл, основные образующиеся вещества. Цепи переноса электронов в хлоропластах. Фотофосфорилирование в световой фазе.
- •22. Темновая фаза фотосинтеза - с3-путь – образование углеводов
- •23. Интенсивность фотосинтеза (иф). Иф с№ и с4-растений. Факторы, влияющие на фотосинтез.
- •24. Дыхание, определение. Дыхательные субстраты. Уравнение дыхания на примере глюкозы.
- •25. Анаэробное дыхание – гликолиз, брожение
- •26. Аэробное дыхание – цикл трикарбоновых кислот (цтк). Роль дыхания в метаболизме.
- •27. Влияние факторов на дыхание
- •28. Определение элементов питания. Элементы-органогены. Зольные вещества. Макро- и микроэлементы
- •29. Особенности поглощения эп корневой системой растений. Формы поглощения эп.
- •30. Механизмы поглощения эп – диффузия, ионообменная адсорбция. Ритм поглощения эп.
- •31. Роль основных эп в обмене веществ – n, p, k, Ca
- •32. Влияние факторов среды на поглощение эп.
- •33. Онтогенез, определение. Классификация по продолжительности жизни и возрастным периодам.
- •34. Рост и развитие, показатели процессов. Меристемы – основа роста.
- •35. Фитогормоны, группы, основное действие. Применение в растениеводстве.
- •36. Периодичность и ритмичность роста. Закон большого периода роста.
- •37. Влияние света на рост и развитие растений.
- •38. Влияние минерального питания на развитие растений.
- •39. Понятие об адаптации растений и ее формах, об устойчивости растений и ее видах.
- •40. Холодостойкость растений, ее диагностика и способы повышения.
- •41. Морозоустойчивость растений, ее диагностика и способы повышения.
- •42. Зимостойкость растений, ее диагностика и способы повышения.
- •43. Жароустойчивость растений, его диагностика и способы повышения.
- •44. Засухоустойчивость растений, ее диагностика и способы повышения.
- •45. Солеустойчивость растений, ее диагностика и возможности повышения.
1. Представление о науке физиология растений. Объекты, предметы, Организация физиологических исследований.
Физиология растений изучает общие закономерности жизнедеятельности растительных организмов и является частью биологической науки. Физиология растений – интенсивно развивающаяся наука, о чем свидетельствуют многочисленные научные общества, издания, симпозиумы и конференции. Цель дисциплины «Физиология растений» – раскрыть сущность этих процессов, показать пути их регуляции и управления.
Физиология растений заниматься исследованием процессов, происходящих в организмах на различных уровнях организации: биоценотическом, организменном, органном, клеточном, субклеточном, молекулярном и даже субмолекулярном.
Задачи физиологии растений:
изучение закономерностей жизнедеятельности растений;
разработка теоретических основ получения максимальных урожаев сельскохозяйственных культур;
разработка установок для осуществления процессов фотосинтеза в искусственных условиях.
Исследователю в области физиологии растений приходится решать задачи количественного определения показателей роста и развития растений, энергетического и пластического обмена (фотосинтеза и дыхания), водного и минерального обмена и др. на разных уровнях организации живой материи. В арсенал современных методов входят методы культивирования растений, спектрофотометрические методы, оптико-акустические, хроматографические, электрохимические, методы световой и электронной спектроскопии и мн. др.
2. История возникновения физиологии растений. Основные направления физиологии растений.
В большинстве учебников становление физиологии растений как самостоятельной науки относят к 18 веку.
В 1727 г. С. Гейлс установил, что движение воды по растению вызывают корневое давление и транспирация. В 1771 г. Дж. Пристли открыл способность зеленых растений выделять на свету кислород. В 1782 г. Ж. Сенебье назвал поглощение СО2 на свету «углекислотным дыханием». В 1797–1804 гг. Н. Т. Соссюр открыл дыхание у растений и рассчитал баланс газов при фотосинтезе. В 1800 г. Ж. Сенебье опубликовал пятитомный трактат «Physiologie vegetale», в котором впервые определил физиологию растений как самостоятельную науку, собрал, обработал и осмыслил известные к тому времени данные, сформулировал основные задачи физиологии растений, определил ее предмет и используемые методы.
В России основателем физиологии и биохимии растений справедливо считается Андрей Сергеевич Фаминцын (1835–1918) – автор первого учебника (1887), создатель первой университетской кафедры и академической лаборатории физиологии растений (1889), которая в последующем была преобразована в Институт физиологии растений. А.С. Фаминцын основал ряд направлений в области эволюционной физиологии и биохимии растений. Наиболее известны его взгляды на симбиотическую эволюцию, единство принципов жизнедеятельности растительных и животных организмов.
В современной физиологии растений различают шесть разных направлений:
биохимическое направление – рассматривает функциональное значение разнообразных органических веществ;
биофизическое направление – изучает вопросы энергетики клетки, электрофизиологии растения и т.д.;
онтогенетическое направление – исследует возрастные закономерности развития растения;
эволюционное, или сравнительное, направление – вскрывает особенности физиологии вида;
экологическое направление – исследует зависимость внутренних процессов растительного организма от внешней среды;
синтетическое, или кибернетическое направление – изучает общие закономерности роста растений, энергетики и кинетики взаимосвязанных процессов: фотосинтеза, дыхания, питания и органообразования.
