Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ_пр_з_Эксперимент_Воронина_all+.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
4.66 Mб
Скачать

10.6 Симплексный метод

Симплексом называют выпуклую фигуру (или тело), образованную k+1 вершинами в пространстве k факторов, причем эти k+1 вершин не принадлежат одновременно ни одному из подпространств из k-1 факторов. Симплекс называется регулярным, если все расстояния между его вершинами равны. В пространстве одного фактора (k=1) симплексом служит отрезок установленного размера, при k=2 – треугольник, при k=3 – тетраэдр. При k4 привычным образом интерпретировать симплекс невозможно.

Симплексный метод позволяет совмещать пробные опыты для определения направления движения с рабочим движением по поверхности отклика к области оптимума. Основная идея симплексного метода в следующем. Если во всех k+1 вершинах симплекса поставить опыты и измерить отклик, то (при не слишком большом уровне шумов) по величине отклика в вершинах можно судить, в каком направлении следует двигаться, чтобы приблизиться к экстремуму. После проведения серии опытов, поставленных в вершинах правильного симплекса, определяется точка, соответствующая условиям, при которых получаются наихудшие результаты. Затем используется важное свойство симплекса, по которому из любого симплекса можно, отбросив одну из вершин, получить новый, заменив отброшенную вершину ее зеркальным отражением относительно противоположной его грани. Если отбросить точку с наихудшими результатами и построить на оставшейся грани новый симплекс, то его центр будет смещен в направлении: худшая точка – центр тяжести остальных точек, то есть в направлении к экстремуму. Затем процесс отбрасывания вершины с наихудшим значением целевой функции и построения нового симплекса повторяется. Если значение выхода в новой вершине снова окажется наихудшим, то нужно вернуться к исходному симплексу и отбросить следующую по порядку вершину с плохим результатом. В результате этого образуется цепочка симплексов, перемещающихся в факторном пространстве к точке экстремума. Таким образом, движение к экстремуму осуществляется путем зеркального отражения точки с наихудшими результатами относительно центра противоположной грани симплекса.

Порядок работы при использовании симплексного метода следующий:

1 – Выбирают начальную точку С1, а также интервалы варьирования Δxi для всех факторов (i=1, 2, …, k).

2 – Выбирают безразмерную величину сим стороны (или ребра) симплекса в относительных единицах по отношению к интервалам варьирования Δxi . Наиболее просто выбрать сим=1. Стремятся, чтобы в безразмерных единицах стороны симплекса были равны.

3 – Вычисляют координаты остальных вершин начального симплекса. Обычно для этого используют следующее правило. Через начальную точку С1 проводят осевые линии, параллельные координатным осям, и выбирают квадрант, в котором по предположению, должен располагаться экстремум целевой функции. В начальную точку помещают вершину симплекса С1 (рисунок 10.5), а сам симплекс I располагают так, чтобы его стороны образовали с осевыми линиями равные углы.

При таком расположении начального симплекса координаты его вершин определяют с помощью матрицы (таблица 10.1), в которой даны координаты вершин (k+1)-мерного симплекса в n-факторном пространстве.

x2

C12

C10

C13 C8

C11 C7

C14 C9 C6

C5

C4

C3

C2

x20 C1

qΔx1

x10 x1

pΔx1

Рисунок 10.5 – Поиск экстремума функции отклика симплексным методом

Безразмерные относительные величины p и q при таком расположении симплекса определяют по формуле:

(10.20)

На рисунке 10.5 показаны размеры pΔx1 и qΔx1 для случая сим=1. Если принимают сим1, то Δxi умножают еще на сим. Знаки Δxi зависят от номера квадранта, в котором расположен начальный симплекс. Для k=2 имеем p≈0,966, q≈0,259.

Таблица 10.1 –Задание координат вершин симплекса

Факторы xi

x1

x2

x3

xi

xk

Вершина C1

x10

x20

x30

xi0

xk0

Вершина C2

x10+pΔx1

x20+qΔx2

x30+qΔx3

xi0+qΔxi

xk0+qΔxk

Вершина C3

x10+qΔx1

x20+pΔx2

x30+qΔx3

xi0+qΔxi

xk0+qΔxk

Вершина Ci+1

x10+qΔx1

x20+qΔx2

x30+qΔx3

xi0+pΔxi

xk0+qΔxk

Вершина Ck+1

x10+qΔx1

x20+qΔx2

x30+qΔx3

xi0+qΔxi

xk0+pΔxk

4 – В вершинах симплекса выполняют наблюдения отклика и сравнивают по величине; выбирают вершину с минимальным откликом и отражают ее относительно противолежащей стороны или грани; находят вершину следующего симплекса II, n вершин которого одновременно являются и вершинами предыдущего симплекса I. Координаты отраженной вершины вычисляют по формуле

(10.21)

где i – номер фактора (i=1, 2, …, k);

l – номер вершины m-го симплекса, где обнаружен минимальный (в случае нахождения максимума) отклик;

m+1 – номер последующего симплекса, содержащего отраженную вершину (ей условно присваивают тот же номер l);

k – число факторов.

Если минимальный отклик оказался сразу в двух вершинах, то вопрос, какую из них отражать, решают произвольно.

5 – Ставят эксперимент в отраженной вершине нового симплекса и отклик в ней сравнивают с откликами в остальных вершинах, а затем снова выбирают вершину с минимальным откликом и отражают ее через противолежащую сторону (или грань) симплекса. Если в новой вершине (m+1)-го симплекса отклик оказался опять минимальным, то возвращаются к m-му симплексу и отражают вторую по минимальности вершину. Если это явление повторяется, то отражают третью по минимальности вершину и так далее.

6 – Эксперимент продолжают до тех пор, пока симплекс не совершит полный оборот вокруг одной из вершин. На рисунке 10.5 это вершина С11.

Точность нахождения точки экстремума зависит от двух причин: размера симплекса и влияния помех. Для уточнения положения экстремальной точки статического объекта в последних симплексах рекомендуется ставить параллельные опыты, чтобы снизить влияние помех, а также выполнить опыт в середине того симплекса, в вершинах которого отклик оказался максимальным по сравнению с остальными симплексами.

Достоинства симплексного метода:

– достаточно высокая помехоустойчивость в смысле выбора направления движения к экстремуму;

– изучение поверхности отклика сочетается с одновременным рабочим движением к экстремуму;

– при оптимально выбранном размере симплекса обеспечивается высокая скорость выхода к области экстремума;

– высокая оперативность, позволяющая использовать этот метод особенно для непрерывной оптимизации объектов с дрейфующим экстремумом.

Недостатки метода:

– метод не позволяет непосредственно получать математическое описание изучаемого участка поверхности отклика, как, например, в методе Бокса-Уилсона;

– в условиях пологих поверхностей отклика симплексный метод дает менее точное решение, чем метод крутого восхождения.