Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
князева сбор вопросов.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.93 Mб
Скачать

Вопрос 16содержательная и полуформаьная аксиоматические теории

Аксиоматический метод применяется не на этапе нового знания, а на этапе систематизации уже добытого знания. Аксиоматический метод можно образно представить как метод «шлифовки» уже добытого, но еще не оформленного, не систематизированного достаточно полно знания. Однако это только одна сторона дела. В результате «шлифовки», т.е. применения аксиоматического метода, теория приобретает логическую завершенность и такую форму, которая необходимо ведет к поиску нового зна-ния, выводит на конструирование новых математических теорий. Соответствующая функция аксиоматизации проявляется не сразу, так как она сама как метод формализации тоже развивается, т.е. аксиоматизация выступает в двух аспектах: и как результат формализации и как средство познания

Как полуформальная, так и формальная аксиоматизация в качестве предмета изучения использует интерпретацию. Метод интерпретации позволяет выработать способы истолкования, определения исходных понятий одной системы средствами другой, уже известной системы. Интерпретация как метод познания действительности применялся математикой давно. При интерпретации первоначальных объектов математики происходит соотнесение их с реальными объектами, благодаря чему знание о них становится более содержательным. Однако такая соотнесенность имеет опосредованный характер и ограниченное число интерпретаций, вплоть до единичной, что связано со спецификой объектов определенной конкретной области. При интерпретации более высоких уровней абстрактных объектов, образующих уже систему формализованную, возможна целая совокупность, множество интерпретаций, среди которых выделяются математические и естественнонаучные. Одни математические структуры интерпретируются другими математическими структурами. 

Для формальной теории истинность теоремы означает, прежде всего, её доказуемость. Для содержательной теории утверждение истинно, если оно истинно в любой модели данной теории. Таким образом, и для любой формальной теории возникают a’ priori два понимания “истинности” формулы: доказуемость и тождественная истинность(истинность при любой интерпретации рассматриваемой теории).

Интерпретация формальной теории (или модель теории) определяется понятию интерпретации для множества формул исчисления предикатов. Не вдаваясь в формальности, ограничимся только намёком: модель теории (или интерпретация) – это некоторое множество вместе с зафиксированными на нём конкретными константами, предикатами и функциями для всех выделенных константных, предикатных и функциональных символов, участвующих в аксиомах теории. При этом требуется, чтобы все аксиомы теории в любой интерпретации этой теории представляли собой истинные в этой модели утверждения.

17. Метод интерпретации. Формальная аксиоматическая теория.

Интерпретация в математике, логике — совокупность значений (смыслов), придаваемых тем или иным способом элементам (выражениям, формулам, символам и т. д.) какой-либо естественнонаучной или абстрактно-дедуктивной теории. В тех же случаях, когда такому «осмыслению» подвергаются сами элементы этой теории, то говорят также об интерпретации символов, формул и т. д.

Конец XIX – начало XX вв.

Стремление к формальному построению аксиоматических теорий;

Поиск новых средств и методов обоснования математики в связи с парадоксами теории множеств;

Понимание того, что метод доказательства с помощью моделей и интерпретаций имеет лишь относительный характер (аксиоматика Пеано, непротиворечивость арифметики целых чисел)

Вариант формализованной аксиоматики осуществляется путем замены содержательных исходных положений (аксиом) и исходных объектов формулами и символами.

Знаки и формулы этого языка не несут никакого содержательного смысла.

Вывод: Математическая теория, непротиворечивость которой требовалось доказать, стала предметом другой математической теории, которую Гильберт назвал математикой или теорией доказательств.

К. Гёдель – математик и логик.

Выводы из теории Гёделя:

Любая формула, отношение которой невыводимо, является выполнимой;

Непротиворечивость формализованной системы ведет к ее неполноте.

Любая процедура доказательства истинных утверждений элементарной теории чисел заведомо неполна. Для любых систем доказательств существуют истинные утверждения, которые даже в таком определенном направлении математики остаются недоказуемыми.

Гёдель делает вывод об ограниченности аксиоматического метода.

18. История возникновения фрактальной геометрии. Значение фрактальной геометрии.

Понятие фрактал, появилось в конце 70-х годов 20 в.. Оно было введено в обращение в 1975 году французским математиком польского происхождения Бенуа Мандельбротом для обозначения нерегулярных, но самоподобных структур, которыми он занимался.

Важную роль в широком распространении идей фрактальной геометрии сыграла книга Б. Мандельброта «Фрактальная геометрия природы». В работах Б. Мандельброта использованы научные результаты, полученные многими учеными. Это объясняется тем, что самому факту появления фракталов более ста лет. Однако появление их в математической литературе было встречено с неприязнью. Общее мнение признало их патологией, представляющей интерес только для исследователей математических причуд, а не для подлинных ученых. Заслуга Б. Мандельброта в том, что ему удалось собрать разрозненные сведения, объединить их в единую систему, увидеть общее в многообразии, указать на важность своего открытия.

История развития идей фрактальной геометрии тесно связана с именами таких известных математиков, как К. Вейерштрасс, Г. Кантор, Дж. Пеано, Ф. Хаусдорф, А.С. Безикович, Х. Кох, В. Серпинский и др. Так К. Вейерштрасс впервые ввел в обращение непрерывную, но нигде не дифференцированную функцию. Ф. Хаусдорф в 1919 г. ввел понятие о дробной размерности множеств и привел примеры таких множеств. Среди них были канторовское множество, кривая Коха и другие математические объекты. Идеи Ф. Хаусдорфа впоследствии были существенно развиты А.С. Безиковичем.

Большой вклад в будущую фрактальную геометрию внесли работы французских математиков Г. Жулиа и П. Фату, которые в начале ХХ века занимались теорией рациональных отображений в комплексной плоскости. Практически полностью забытая, их деятельность получила неожиданное развитие в начале восьмидесятых годов, когда с помощью компьютеров математикам удалось получить прекрасные картины, показывающие примеры таких отображений.

В настоящее время язык фрактальной геометрии широко используется

в физике:

– при изучении поглощения или рассеяния излучения в пористых средах;

– для характеристики сильно развитой турбулентности;

– при моделировании свойств поверхности твердых тел;

– для описания диэлектрического пробоя и молнии;

– при анализе процессов усталостного разрушения материалов;

– при исследовании различных стадий роста вещества за счет диффузии;

в астрономии:

– при описании процессов кластеризации галактик во Вселенной;

в картографии:

– при изучении форм береговых линий и разветвленной сети речных русел;

в биологии:

– при анализе строения кровеносной системы или рассмотрении сложных поверхностей клеточных мембран.