Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KhIMIYa_EKZAMEN.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
505.47 Кб
Скачать

11. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов. Факторы, влияющие на рН и рОн буферных растворов.

Уравнение Гендерсона-Гассельбаха - математическое выражение, характеризующее возможности буферной системы. Уравнение показывает, как зависит кислотно-основное равновесие буферного раствора от свойств компонентов кислотно-основной буферной системы и от количественного соотношения этих компонентов в растворе. Показателем кислотно-основного равновесия в растворе является водородный показатель, pH. Свойство кислоты (её способность распадаться на ионы), как составляющей буферной системы, характеризуется значением константы равновесия, константы диссоциации кислоты, Kа. pK= – lgKД

Количественная структура (состав) буферной системы может быть оценена в виде отношения соль/кислота. Учитывая сказанное, уравнение Гендерсона-Гассельбаха выглядит следующим образом:

pH = pK+ lg

На величину рН и рОН влияют константа диссоциации и соотношения концентраций компонентов.

12. Буферная ѐмкость. Зона буферного действия. Количественное определение буферной ёмкости.

Интервал рН=рКа±1 называется зоной буферного действия.

Буферная ёмкость(В) выражается количеством моль-эквивалентов сильной кислоты или щелочи, которое следует добавить к одному литру буфера, чтобы сместить рН на единицу.

В =

В – буферная ёмкость,

nЭ– количество моль-эквивалента сильной кислоты или щелочи,

ΔрН – изменение рН.

На практике буферная ёмкость рассчитывается по формуле:

В =

V – объём кислоты или щелочи,

N – эквивалентная концентрация кислоты или щелочи,

Vбуф - объём буферного раствора,

Δ рН – изменение рН.

Буферная ёмкость зависит от концентрации электролитов и соотношения компонентов буфера.

Количество кислоты или щелочи, которое нужно добавить к 1 л буферного раствора, чтобы значение его pH изменилось на единицу, называют буферной емкостью

Чем выше исходная концентрация буферной смеси, тем выше ее буферная емкость.

20. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая и протеиновая

Гемоглобиновый буфер Составляет 35 % буферной ёмкости.

Главная буферная система эритроцитов, на долю которой приходится около 75% всей буферной ёмкости крови. Гемоглобиновая буферная система крови играет значительную роль в: дыхании, транспорте кислорода в ткани и в поддержании постоянства рН крови.

Она представлена двумя слабыми кислотами – гемоглобином и оксигемоглобином и сопряженными им основаниями – соответственно гемоглобинат- и оксигемоглобинат-ионами:

HHbH+ + Hb-

HHbO2H+ HbO2-

Фосфатный буфер Составляет 5 % буферной ёмкости.

Содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках он представлен солями

К2НРО4 и КН2РО4, а в плазме крови и в межклеточной жидкости

Na2HPO4 и NaH2PO4.

Функционирует в основном в плазме и включает: дигидрофосфат ион и гидрофосфат ион

Н2РО4- и НРО42-

Эта система играет решающую роль в биологических средах – в клетке, в соках пищеварительных желез, в моче.

Бикарбонатный буфер. Он составляет 53 % буферной ёмкости.

Представлен:

Н2СО3 и NaHCO3

Бикарбонатный буфер представляет собой основную буферную систему плазмы крови; он является системой быстрого реагирования, так как продукт его взаимодействия с кислотами СО2 – быстро выводится через легкие.

Белковый буфер Составляет 5 % буферной ёмкости.

Он состоит из белка-кислоты и его соли, образованной сильным основанием.

Pt – COOH - белок-кислота

Pt – COONa – белок-соль

1. При образовании в организме сильных кислот они взаимодействуют с солью белка.

НС1 + Pt-COONa ↔ Pt-COOH + NaCl.

2. При увеличении щелочных продуктов они взаимодействуют с Pt-СООН:

NaOH + Pt-COOH ↔ Pt-COONa + H2O

Белок – это амфотерный электролит и поэтому проявляет собственное буферное действие.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]