- •1. Раствор как гомогенная система. Растворитель, растворѐнное вещество. Концентрированные и разбавленные растворы.
- •4. Эквивалентная масса вещества, еѐ связь с молярной массой, фактор эквивалентности. Правила расчѐта фактора эквивалентности для различных классов неорганических соединений.
- •5. Стандартные растворы, способы их приготовления. Понятия «первичный стандарт» и «вторичный стандарт». Типовые расчѐты по практическому приготовлению растворов.
- •8. Константа диссоциации как константа равновесия процесса диссоциации. Показатель константы диссоциации (рК).
- •9. Закон разбавления Оствальда, его физический смысл.
- •10. Какие растворы называются буферными растворами. Классификация буферных растворов. Механизм буферного действия.
- •11. Уравнение Гендерсона – Гассельбаха для определения рН и рОн протолитических буферных растворов. Факторы, влияющие на рН и рОн буферных растворов.
- •12. Буферная ѐмкость. Зона буферного действия. Количественное определение буферной ёмкости.
- •20. Буферные системы крови: гидрокарбонатная, фосфатная, гемоглобиновая и протеиновая
- •21. Взаимодействие буферных систем в организме.
- •22. Кислотно-основное равновесие. Основные показатели кор. Возможные причины и типы нарушений кор организма.
- •15. Основные положения и понятия координационной теории
- •16. Классификация комплексных соединений.
- •17. Комплексообразующая способность s-р-и d- элементов. Еѐ причины.
- •18.Типы гибридизации комплексных соединений. Внешнеорбитальные и внутриорбитальные комплексные соединения.
- •19. Устойчивость комплексных соединений. Константа нестойкости комплексных соединений, еѐ связь с константой устойчивости.
- •20. Значение комплексных соединений.
- •26. Закон Гесса.
- •27. Второй закон термодинамики. Обратимые и необратимые в термодинамическом смысле процессы. Энтропия.
- •29. Понятие экзергонических и эндергонических процессов.
- •30. Предмет химической кинетики. Скорость реакции, средняя скорость реакции в интервале, истинная скорость.
- •31. Классификации реакций, применяющиеся в кинетике: реакции, гомогенные, гетерогенные и микрогетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные).
- •32. Молекулярность элементарного акта реакции. Порядок реакции.
- •33. Зависимость скорости реакции от концентрации. Закон действующих масс. Константа скорости химической реакции.
- •34. Зависимость скорости реакции от температуры. Правило Вант-Гоффа.
- •37. Катализ. Гомогенный и гетерогенный, положительный и отрицательный катализ.
- •38. Особенности каталитический активности ферментов.
- •39. Химическое равновесие. Принцип Ле-Шателье.
- •40. Обратимые и необратимые по направлению реакции. Термодинамические условия равновесия в изолированных и закрытых системах.
- •41. Константа химического равновесия.
- •42. Коллигативные свойства растворов. Идеальный раствор.
- •43. Первый закон Рауля. Давление насыщенного пара.
- •44. Второй закон Рауля.
- •45. Приведите основные формулы для расчета молярной массы. Температура кипения и температура замерзания растворов.
- •46. Что такое осмос. Сформулируйте закон Закон Вант-Гоффа. Осмотическое давление. Экзоосмос и эндосмос.
- •47. Роль осмоса и осмотического давления в биологических системах. Тургор, лизис, плазмолис, гемолиз. Изотонические, гипотонические, гипертонические растворы.
- •49. Поверхностная активность (g) как характеристика поведения вещества при адсорбции.
- •50. Методы определения поверхностного натяжения.
- •51.Зависимость поверхностного натяжения от природы и концентрации растворенного вещества (пав,пив,пнв). Ориентация молекул пав в поверхностном слое. Правило Дюкло-Траубе.
- •52. Адсорбция, основные термины (адсорбент, адсорбтив, адсорбат, десорбция). Химическая и физическая адсорбция.
- •53. Уравнение адсорбции Гиббса, его анализ. Поверхностно-активные, поверхностно-инактивные и поверхностно-неактивные вещества. Изотерма адсорбции, предельная адсорбция г.
- •54. Адсорбция на твёрдых поверхностях. Удельная адсорбция. Факторы определяющие количество поглощённого газа или пара на твёрдом адсорбенте.
- •55. Теория мономолекулярной адсорбции Ленгмюра. Уравнение Ленгмюра, его анализ. Изотерма адсорбции, предельная адсорбция.
- •60. Ионообменная адсорбция, её особенности. Вещества иониты. Их деление на катиониты, аниониты и амфолиты. Деление ионитов по
- •67. Дисперсные системы, дисперсионная среда, диспергированное вещество.
- •68. Классификация дисперсных систем по размерам частиц диспергированного вещества: взвеси, коллоидные системы, истинные растворы.
- •64. Золи как высокодисперсные системы с жидкой диперсионной средой.
- •65. Гидрофобные и гидрофильные коллоидные системы.
- •66. Методы получения коллоидных систем: диспергационные и конденсационные методы (физическая конденсация, конденсация из паров и химическая конденсация).Условия получения каллоидных систем.
- •67. Пептизация как физико-химическое дробление осадков до частиц коллоидного размера. Адсорбционная пептизация. Пептизация путём поверхностной диссоциации. Пептизация путём промывания осадка
- •68. Методы очистки коллоидных систем: диализ, электродиализ и ультрафильтрация. Принцип работы аппарата «искусственная почка».
- •69.Молекулярно-кинетические свойства каллоидных систем (диффузия, броуновское движение). Оптические свойства каллоидных систем, эффект Тиндаля.
- •70. Строение мицеллы. Изоэлектрическое состояние мицеллы.
- •71. Двойной электрический слой (дэс), современные представления о строении дэс.
- •72. Электрокинетический потенциал (или дзета-потенциал) как важнейшая характеристика дэс. Факторы, определяющие величину дзета-потенциала. Электрокинетические явления в живых организмах.
- •73. Седиментационная и агрегативная устиойчивость коллоидных систем.
- •74. Явление коагуляции коллоидных систем. Две стадии коагуляции: скрытая и явная коагуляции. Факторы, вызывающие коагуляцию
- •76. Коллоидная защита, ее количественная мера. Значение калоидной защиты в биологии и медицине.
- •77. Кинетика коагуляции.
- •78. Растворы высокомолекулярных соединений (вмс) как истинные растворы, их особенности: гомогенность, самопроизвольность образования, равновесность, молекулярность или ионность
- •79. Явление набухания вмс, степень набухания как количественная характеристика процесса набухания. Ограниченное набухание и неограниченное.
- •80. Вязкость растворов вмс, её особенность. Причины высокой вязкости вмс. Характеристическая вязкость. Уравнение Марка-Хаувика, расчёт молекулярной массы полимера.
- •81. Растворы вмс и их устойчивость. Высаливание белков из растворов. Применение в медицине.
- •82. Полиэлектролиты. Белки как представители полиэлектролитов. Изоэлектрическое состояние белка.
- •83. Студень как ограниченно набухший полимер. Студнеобразование – процесс образования пространственной сетки в застудневающей системе.
- •84. Влияние различных факторов на процесс студнеобразования: концентрация вмс, форма и размер макромолекул, температура, время, рН-среды.
- •85. Свойства студней: упругость, эластичность, способность сохранять свою форму, синерезис.
- •86. Мембранное равновесие Доннана.
49. Поверхностная активность (g) как характеристика поведения вещества при адсорбции.
g
= -
при
c
→ 0
Чем в большей степени уменьшается поверхностное натяжение с увеличением концентрации адсорбируемого вещества, тем больше поверхностная активность этого вещества и наоборот.
50. Методы определения поверхностного натяжения.
Существуют два типа методов определения поверхностного натяжения: статические и динамические.
Динамические методы, например метод колебания струи, вытекающей из отверстия неправильной формы, позволяют измерить поверхностное натяжение вновь образованной поверхности сразу после ее образования. Статическими методами измеряют поверхностное натяжение на границе раздела фаз, пришедших в равновесие.
51.Зависимость поверхностного натяжения от природы и концентрации растворенного вещества (пав,пив,пнв). Ориентация молекул пав в поверхностном слое. Правило Дюкло-Траубе.
В жидких растворах поверхностное натяжение σ является функцией от концентрации растворенного вещества. На рис. 4.1 представлены три возможных зависимости поверхностного натяжения от концентрации раствора (т.н. изотермы поверхностного натяжения). Вещества, добавление которых к растворителю уменьшает поверхностное натяжение, называют поверхностно-активными (ПАВ), вещества, добавление которых увеличивает или не изменяет поверхностное натяжение – поверхностно-инактивными(ПИАВ).
Рис. 4.1 Изотермы поверхностного Рис. 4.2 Изотерма адсорбции натяжения растворов ПИАВ (1, 2) и ПАВ на границе раствор – пар ПАВ (3)
Уменьшение поверхностного натяжения и, следовательно, поверхностной энергии происходит в результате адсорбции ПАВ на поверхности раздела жидкость – пар, т.е. того, что концентрация поверхностно-активного вещества в поверхностном слое раствора оказывается больше, чем в глубине раствора.
Правило Дюкло-Траубе.
В гомологическом ряду жирных кислот с увеличением длины углеводородного радикала на одну -СН2 группу поверхностная активность возрастает в 3 - 3,5 раза. Принцип независимости поверхностного действия, заключающийся в том, что при адсорбции полярная группа, обладающая большим сродством к полярной фазе, втягивается в воду, в то время как неполярный радикал выталкивается в неполярную фазу. Образуется мономолекулярный слой:
-малые концентрации ПАВ. При малых концентрациях ПАВ, углеводородные радикалы (R), вытолкнутые в воздух, «плавают» на поверхности воды, затем, по мере роста концентрации ПАВ, они начинают подниматься.
-умеренные концентрации
-насыщенный адсорбционный слой. В насыщенном адсорбционном слое поверхность воды оказывается сплошь покрытой «частоколом Ленгмюра» из вертикально ориентированных молекул ПАВ
52. Адсорбция, основные термины (адсорбент, адсорбтив, адсорбат, десорбция). Химическая и физическая адсорбция.
Адсорбция – самопроизвольное изменение концентрации компонента, в поверхностном слое по сравнению с его концентрацией в объёме. Адсорбент - вещество, на котором адсорбируются молекулы других веществ Адсорбтив - вещество, молекулы которого адсорбируются на адсорбенте; Адсорбат – молекулы вещества которые уже адсорбировалось на адсорбенте. Десорбция - процесс, обратный адсорбции.
Физическая адсорбция обусловлена межмолекулярным взаимодействием за счёт сил Ван-дер-Ваальса или водородной связью. Поэтому для этого вида адсорбции характерны: обратимость, неспецефичность, экзотермичность.
Химическая адсорбция осуществляется при взаимодействии адсорбента с адсорбатом с образованием химической связи. Химическая адсорбция: необратима, специфична и локализована
