Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рентгеновские лучи. Характеристическое и тормозное рентгеновское излучение..docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.99 Mб
Скачать

Компьютерная томография (кт)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотности образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

 

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

 

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительную лучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит  от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

1.     Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

2.     Повышать контраст и увеличивать интересующий фрагмент изображения.

3.     Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

4.     В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

5.     Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

При торможении быстрых заряженных частиц атомами вещества анода возникает электромагнитное излучение, которое называют тормозным рентгеновским излучением.

При торможении большого количества электронов образуется сплошной (непрерывный) спектр рентгеновского излучения.

 

 

Ф

Рис. 44. Спектр тормозного рентгеновского излучения

Короткое излучение возникает, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

; м, с =3.108 м/с.

Поток рентгеновского излучения (Ф):

Z – порядковый номер атома вещества анода;

k = – коэффициент пропорциональности;

I – сила тока в рентгеновской трубке;

U – напряжение в рентгеновской трубке.

Увеличивая напряжение на рентгеновской трубке, на фоне сплошного спектра появляется линейчатый спектр, который соответствует характеристическому рентгеновскому излучению (рис. 45).

Характеристическое рентгеновское излучение возникает из-за того, что некоторые ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, испуская рентгеновские кванты электромагнитного излучения:

Фλ

 

 

 

 

 

 

 

Рис. 45.

С увеличением заряда атома анода увеличивается частота излучаемого характеристического излучения. Такую закономерность называют законом Мозли:

,

где – частота спектральной линии характеристического рентгеновского излучения;

Z – атомный номер испускающего элемента; А и В – постоянные.

Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра.

Характеристическое рентгеновское излучение – электромагнитное излучение, испускаемое при переходах

электронов с внешних электронных оболочек атома на внутренние (характеристический спектр). Длина волны характеристического рентгеновского излучения, испускаемого химическими элементами, зависит от атомного номера элемента. Кривая соответствует закону Мозли: чем больше атомный номер элемента, тем меньше длина волны характеристической линии. Закон Мозли – линейная зависимость квадратного корня

из частоты характеристического рентгеновского излучения от атомного номера химического элемента.

Тормозное рентгеновское излучение (рентгеновские лучи) с непрерывным энергетическим спектром - коротковолновое электромагнитное (фотонное) излучение. Образуется при уменьшении кинетической энергии (торможении, рассеянии)

быстрых заряженных частиц, например, при торможении в кулоновском поле ускоренных электронов.

Существенно для легких частиц электронов и позитронов. Спектр тормозного излучения непрерывен,

максимальная энергия равна начальной энергии частицы.

Рентгеновские спектры, спектры испускания и поглощения рентгеновских лучей. Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией.Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е1 начального и Е2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой v=(Е1- Е2)/h, где h - постоянная Планка. Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

 

 

20. Орбитальный, спиновой и полный механические моменты электрона в атоме, их физический смысл и возможные значения.Механический момент атома складывается из орбитальных и спиновыхмоментов электронов. Магнетизм ядра из-за его малости можно не учитывать. При сложениимоментов в полный момент атома возможны два случая:1) Орбитальные моменты электронов Ml взаимодействуют между собой сильнее, чем соспиновыми моментами Ms. В свою очередь спиновые моменты электронов связаны междусобой сильнее, чем с орбитальными моментами. В этом случае сначала складываютсяотдельно орбитальные моменты электронов Ml в полный орбитальный момент атома ML испиновые моменты электронов Ms в полный спиновой момент атома MS, а затемполучившиеся моменты складываются в полный момент атома MJ. Такой случай сложениямоментов называется LS – связью. Такая связь наблюдается у большинства атомов.2) Связь между орбитальным Ml и спиновым Ms моментом электрона сильнее, чемвзаимодействие его с другими электронами. В этом случае сначала складываются спиновойMs и орбитальный Ml моменты для каждого электрона в полный момент электрона Mj, а затемуже эти электронные моменты складываются в полный момент атома MJ. Такая связьназывается jj – связью. jj – связь наблюдается в основном у тяжелых атомов.Рассмотрим подробнее случай LS – связи. В этом случае сначала формируется полныйорбитальный момент атома ML. Его величина определяется формулойML = h L(L +1) .Рассмотрим, как получаются возможные значения L для атома с двумя электронами. В этомслучае орбитальное квантовое число L может иметь значенияL = l1 + l 2;l1 + l 2 −1;..., l1 − l 2 ,где l1 и l2 – орбитальные числа, соответствующие орбитальному движению каждогоэлектрона. Всего в этом случае получается 2lmin+1 значение L (lmin - меньшее из чисел l1 и l2).В случае атома, имеющего более чем два электрона, максимальное значение L равно суммечисел l всех электронов. Чтобы найти минимальное значение L, нужно сложить сначала числаl любых двух электронов. Затем каждый из полученных результатов складывается с lтретьего электрона и т. д. Наименьшее из получившихся при этом чисел будет представлятьсобой минимальное возможное значение квантового числа L. Значения орбитального момента импульса всегда целые или ноль.Проекция результирующего орбитального момента на ось z определяется по стандартнойформуле:MLz = mLh , mL = −L,....,0,......,L .Все вычисления необходимо повторить дли получения аналогичных формул для спиновогомеханического момента электронов:

MS = h S(S +1)

MSz = mSh , mS = −S,....,0,......,S.

Значения квантового числа спинового механического момента получаются так же, как и значения L. Результирующий орбитальный и спиновой механические моменты атома образуют в сумме полный момент импульса атома MJ = h J(J + 1) . При данных значениях ML и MS квантовое число J имеет следующие значения J = L + S,L + S −1,......, L − S . Следовательно, J – целое, если значение S – целое (четное число электронов), и J – полуцелое, если значения S – полуцелые (нечетное число электронов). Проекция полного механического момента атома на направление z

MJz = mJh , mJ = −J,....,0,......,J .

Ясно, что состояние атома определяется квантовыми числами L, S и J. Для упрощения записи удобно пользоваться символической формой вида J 2S+1L . Под буквой L понимают величину, обозначающую значение полного орбитального момента импульса. Для электронов с L = 0 это S, L = 1 это P, L = 2 это D, L = 3 это F и так далее. Нижний индекс дает значение квантового числа полного момента импульса атома. Значение верхнего индекса равно мультиплетности энергетического уровня.