- •Первый закон Ньютона (закон инерции). Сила. Масса. Импульс тела. Второй закон Ньютона. Импульс силы. Закон изменения импульса тела. Третий закон Ньютона.
- •4.Масса сила импульс. Второй закон ньютона
- •Формулировка второго закона Ньютона с использованием понятия импульса:
- •5.Третий закон ньютона и закон сохранения импульса.
- •6.Работа и мощность.Работа переменной силы.
- •8.Консервативные силы.Потенциальная энергия.Закон сохранения энергии в механике.
- •9.Момент силы и момент импульса.Момент инерции.
- •Тема 1. Кинематика поступательного и вращательного движения.
- •Механика
- •Молекулярная физика и термодинамика
9.Момент силы и момент импульса.Момент инерции.
Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. В физике момент силы можно понимать как «вращающая сила». В Международной системе единиц (СИ) единицей измерения момента силы является ньютон-метр. Момент силы иногда называют моментом пары сил, это понятие возникло в трудахАрхимеда над рычагами. В простейшем случае, если сила приложена к рычагу перпендикулярно ему, момент силы определяется как произведение величины этой силы на расстояние до оси вращения рычага. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метров от его оси вращения, создаёт такой же момент, что и сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров до оси вращения. Более точно, момент силы частицы определяется как векторное произведение:
где
—
сила, действующая на частицу,
а
—радиус-вектор частицы.
Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количествовращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент
импульса замкнутой системы сохраняется.
Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).
Единица измерения в Международной системе единиц (СИ): кг·м².
Обозначение: I или JМоментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
,
где: mi — масса i-й точки,
ri — расстояние от i-й точки до оси.
11. Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этиммомент импульса замкнутой системы в любой системе координат не изменяется со временем.
Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.
В
упрощённом виде:
,
если система находится в равновесии.
16.Постулаты специальной теории относительности.
Специальная теория относительности (СТО; также частная теория относительности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.
https://studfiles.net/preview/5569122/page:3/
Постулаты сто
В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно. Если быть более точным (современный подход) инерциальные системы отсчета собственно и определяются как такие системы отсчета, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчета постулируется.
Постулат 1 (принцип относительности Эйнштейна). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.
Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.
Постулат 2 (принцип постоянства скорости света). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.
Принцип постоянства скорости света противоречит классической механике, а конкретно - закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно бытьотносительным - неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что "расстояния" также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе - за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.
27. Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами. Современная формулировка: Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы. Кулона закон записывается следующим образом:
где
—
сила, с которой заряд 1 действует на
заряд 2;
—
величина зарядов;
—
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами —
);
—
коэффициент пропорциональности.
Ёмкость — внутренний объём сосуда, вместимость, то есть максимальный объём помещающейся внутрь него жидкости.
36. Правила Кирхгофа (часто, в литературе, называются не совсем корректно Зако́ны Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения.
Для формулировки правил Кирхгофа вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют любой двухполюсник, входящий в цепь, Узлом называют точку соединения трех и более ветвей, Контур — замкнутый цикл из ветвей. Термин замкнутый цикл означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.
В терминах данных определений правила Кирхгофа формулируются следующим образом.
Первое правило
Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда
Постулаты сто
В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно. Если быть более точным (современный подход) инерциальные системы отсчета собственно и определяются как такие системы отсчета, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчета постулируется.
Постулат 1 (принцип относительности Эйнштейна). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.
Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.
Постулат 2 (принцип постоянства скорости света). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.
Принцип постоянства скорости света противоречит классической механике, а конкретно - закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно бытьотносительным - неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что "расстояния" также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе - за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.
27. Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами. Современная формулировка: Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы. Кулона закон записывается следующим образом:
где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности.
Ёмкость — внутренний объём сосуда, вместимость, то есть максимальный объём помещающейся внутрь него жидкости.
36. Правила Кирхгофа (часто, в литературе, называются не совсем корректно Зако́ны Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного, переменного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей. Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений, и соответственно, найти значение токов на всех ветвях цепи и все межузловые напряжения.
Для формулировки правил Кирхгофа вводятся понятия узел, ветвь и контур электрической цепи. Ветвью называют любой двухполюсник, входящий в цепь, Узлом называют точку соединения трех и более ветвей, Контур — замкнутый цикл из ветвей. Термин замкнутый цикл означает, что, начав с некоторого узла цепи и однократно пройдя по нескольким ветвям и узлам, можно вернуться в исходный узел. Ветви и узлы, проходимые при таком обходе, принято называть принадлежащими данному контуру. При этом нужно иметь в виду, что ветвь и узел могут принадлежать одновременно нескольким контурам.
В терминах данных определений правила Кирхгофа формулируются следующим образом.
Первое правило
Первое правило Кирхгофа гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда
https://studfiles.net/preview/5569122/page:4/
Второе правило
Второе правило Кирхгофа (правило напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений на всех ветвях, принадлежащих любому замкнутому контуру цепи, равна алгебраической сумме ЭДС ветвей этого контура. Если в контуре нет источников ЭДС (идеализированных генераторов напряжения), то суммарное падение напряжений равно нулю:
для
постоянных напряжений
для
переменных напряжений
https://studfiles.net/preview/5569122/page:5/
ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ 1. Первый закон Ньютона. Инерциальные системы 2. Масса и импульс тела 3. Второй закон Ньютона. Принцип суперпозиции 4. Третий закон Ньютона 5. Импульс произвольной системы тел 6. Основное уравнение динамики поступательного движения произвольной системы тел 7. Закон сохранения импульса <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_1.jpg" width="800" align="left" alt="ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ 1. Первый закон Ньютона. Инерциальные системы 2. Масса и импульс тела 3. Второй закон Ньютона. Принцип суперпозиции 4. Третий закон Ньютона 5. Импульс произвольной системы тел 6. Основное уравнение динамики поступательного" title="ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ 1. Первый закон Ньютона. Инерциальные системы 2. Масса и импульс тела 3. Второй закон Ньютона. Принцип суперпозиции 4. Третий закон Ньютона 5. Импульс произвольной системы тел 6. Основное уравнение динамики поступательного">
2 1. Первый закон Ньютона. Инерциальные системы В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированных И. Ньютоном в 1687 г. Эти законы играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_2.jpg" width="800" align="left" alt="1. Первый закон Ньютона. Инерциальные системы В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированных И. Ньютоном в 1687 г. Эти законы играют исключительную роль в механике и являются (как и все физи" title="1. Первый закон Ньютона. Инерциальные системы В основе так называемой классической или ньютоновской механики лежат три закона динамики, сформулированных И. Ньютоном в 1687 г. Эти законы играют исключительную роль в механике и являются (как и все физи">
3 Первый закон Ньютона: всякая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние. (Закон инерции) <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_3.jpg" width="800" align="left" alt="Первый закон Ньютона: всякая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние. (Закон инерции)" title="Первый закон Ньютона: всякая материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние. (Закон инерции)">
4 Скорость любого тела остаётся постоянной (в частности, равной нулю), пока воздействие на это тело со стороны других тел не вызовет её изменения. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон Ньютона называют законом инерции. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_4.jpg" width="800" align="left" alt="Скорость любого тела остаётся постоянной (в частности, равной нулю), пока воздействие на это тело со стороны других тел не вызовет её изменения. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью" title="Скорость любого тела остаётся постоянной (в частности, равной нулю), пока воздействие на это тело со стороны других тел не вызовет её изменения. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью">
5 Первый закон Ньютона выполняется в инерциальных системах отсчёта. Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и равномерно (т.е. с постоянной скоростью). Таким образом, первый закон Ньютона утверждает существование инерциальных систем отсчёта. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_5.jpg" width="800" align="left" alt="Первый закон Ньютона выполняется в инерциальных системах отсчёта. Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и рав" title="Первый закон Ньютона выполняется в инерциальных системах отсчёта. Инерциальной системой отсчёта является такая система отсчёта, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется прямолинейно и рав">
6 Система отсчёта, связанная с Землей, строго говоря, неинерциальная, однако эффекты, обусловленные её неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца) при решении многих задач малы, и в этих случаях её можно считать инерциальной.
http://www.myshared.ru/slide/773878/
7 Сущность первого закона Ньютона может быть сведена к трём основным положениям: все тела обладают свойствами инерции; существуют инерциальные системы отсчёта, в которых выполняется первый закон Ньютона; движение относительно. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_7.jpg" width="800" align="left" alt="Сущность первого закона Ньютона может быть сведена к трём основным положениям: все тела обладают свойствами инерции; существуют инерциальные системы отсчёта, в которых выполняется первый закон Ньютона; движение относительно." title="Сущность первого закона Ньютона может быть сведена к трём основным положениям: все тела обладают свойствами инерции; существуют инерциальные системы отсчёта, в которых выполняется первый закон Ньютона; движение относительно.">
8 2. Масса и импульс тела Воздействие на данное тело со стороны других тел вызывает изменение его скорости, т.е. сообщает данному телу ускорение. Опыт показывает, что одинаковое воздействие сообщает разным телам разные по величине ускорения. Всякое тело противится попыткам изменить его состояние движения. Это свойство тел, как мы уже говорили, называется инертностью (следует из первого закона Ньютона). Мерой инертности тела является величина, называемая массой. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_8.jpg" width="800" align="left" alt="2. Масса и импульс тела Воздействие на данное тело со стороны других тел вызывает изменение его скорости, т.е. сообщает данному телу ускорение. Опыт показывает, что одинаковое воздействие сообщает разным телам разные по величине ускорения. Всякое тел" title="2. Масса и импульс тела Воздействие на данное тело со стороны других тел вызывает изменение его скорости, т.е. сообщает данному телу ускорение. Опыт показывает, что одинаковое воздействие сообщает разным телам разные по величине ускорения. Всякое тел">
9 Масса – величина аддитивная (масса тела равна сумме масс частей, составляющих это тело). Система тел, взаимодействующих только между собой, называется замкнутой. Рассмотрим замкнутую систему двух тел массами m1 и m2 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_9.jpg" width="800" align="left" alt="Масса – величина аддитивная (масса тела равна сумме масс частей, составляющих это тело). Система тел, взаимодействующих только между собой, называется замкнутой. Рассмотрим замкнутую систему двух тел массами m1 и m2" title="Масса – величина аддитивная (масса тела равна сумме масс частей, составляющих это тело). Система тел, взаимодействующих только между собой, называется замкнутой. Рассмотрим замкнутую систему двух тел массами m1 и m2">
10 Приняв во внимание направление скоростей, запишем: Произведение массы тела на скорость называется импульсом тела (тело, обладающее большей массой, меньше изменяет скорость).
11 3. Второй закон Ньютона. Математическое выражение второго закона Ньютона: скорость изменения импульса тела равна действующей на него силе. Отсюда можно заключить, что изменение импульса тела равно импульсу силы. т. к., то ноно тогда <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_11.jpg" width="800" align="left" alt="3. Второй закон Ньютона. Математическое выражение второго закона Ньютона: скорость изменения импульса тела равна действующей на него силе. Отсюда можно заключить, что изменение импульса тела равно импульсу силы. т. к., то ноно тогда" title="3. Второй закон Ньютона. Математическое выражение второго закона Ньютона: скорость изменения импульса тела равна действующей на него силе. Отсюда можно заключить, что изменение импульса тела равно импульсу силы. т. к., то ноно тогда">
12 основное уравнение динамики поступательного движения материальной точки. Принцип суперпозиции или принцип независимости действия сил Если на материальное тело действуют несколько сил, то результирующую силу можно найти из выражения: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_12.jpg" width="800" align="left" alt="основное уравнение динамики поступательного движения материальной точки. Принцип суперпозиции или принцип независимости действия сил Если на материальное тело действуют несколько сил, то результирующую силу можно найти из выражения:" title="основное уравнение динамики поступательного движения материальной точки. Принцип суперпозиции или принцип независимости действия сил Если на материальное тело действуют несколько сил, то результирующую силу можно найти из выражения:">
13 Найдем изменение импульса тела за конечный промежуток времени изменение импульса тела равно импульсу силы. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_13.jpg" width="800" align="left" alt="Найдем изменение импульса тела за конечный промежуток времени изменение импульса тела равно импульсу силы." title="Найдем изменение импульса тела за конечный промежуток времени изменение импульса тела равно импульсу силы.">
14 В системе СИ семь основных единиц (м) – метр, (кг) – килограмм, (с) – секунда, (А) – ампер, (К) – кельвин, (кд) – кандела (единица силы света), (кмоль) – единица количества вещества. Остальные единицы производные получаются из физических законов связывающих их с основными единицами. Например из второго закона Ньютона производная единица силы 1 кг·м/с 2 = 1 Н. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_14.jpg" width="800" align="left" alt="В системе СИ семь основных единиц (м) – метр, (кг) – килограмм, (с) – секунда, (А) – ампер, (К) – кельвин, (кд) – кандела (единица силы света), (кмоль) – единица количества вещества. Остальные единицы производные получаются из физических законов связ" title="В системе СИ семь основных единиц (м) – метр, (кг) – килограмм, (с) – секунда, (А) – ампер, (К) – кельвин, (кд) – кандела (единица силы света), (кмоль) – единица количества вещества. Остальные единицы производные получаются из физических законов связ">
15 4. Третий закон Ньютона Действие тел друг на друга носит характер взаимодействия. Третий закон Ньютона отражает тот факт, что сила есть результат взаимодействия тел, и устанавливает, что силы, с которыми действуют друг на друга два тела, равны по величине и противоположны по направлению. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_15.jpg" width="800" align="left" alt="4. Третий закон Ньютона Действие тел друг на друга носит характер взаимодействия. Третий закон Ньютона отражает тот факт, что сила есть результат взаимодействия тел, и устанавливает, что силы, с которыми действуют друг на друга два тела, равны по вел" title="4. Третий закон Ньютона Действие тел друг на друга носит характер взаимодействия. Третий закон Ньютона отражает тот факт, что сила есть результат взаимодействия тел, и устанавливает, что силы, с которыми действуют друг на друга два тела, равны по вел">
16 Всякое действие вызывает равное по величине противодействие 3-й Закон Ньютона в общем случае является универсальным законом взаимодействий: F21F21 F12F12 C илы, связанные по 3 закону Ньютона, приложены к различным телам и, следовательно, никогда не могут начинаться в одной точке <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_16.jpg" width="800" align="left" alt="Всякое действие вызывает равное по величине противодействие 3-й Закон Ньютона в общем случае является универсальным законом взаимодействий: F21F21 F12F12 C илы, связанные по 3 закону Ньютона, приложены к различным телам и, следовательно, никогда не м" title="Всякое действие вызывает равное по величине противодействие 3-й Закон Ньютона в общем случае является универсальным законом взаимодействий: F21F21 F12F12 C илы, связанные по 3 закону Ньютона, приложены к различным телам и, следовательно, никогда не м">
17 5. Импульс произвольной системы тел Центр инерции или центр масс системы материальных точек называют такую точку С, радиус-вектор которой: где – общая масса системы, n – число точек системы. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_17.jpg" width="800" align="left" alt="5. Импульс произвольной системы тел Центр инерции или центр масс системы материальных точек называют такую точку С, радиус-вектор которой: где – общая масса системы, n – число точек системы." title="5. Импульс произвольной системы тел Центр инерции или центр масс системы материальных точек называют такую точку С, радиус-вектор которой: где – общая масса системы, n – число точек системы.">
18 – импульс системы тел равен произведению массы системы на скорость её центра инерции. Скорость центра инерции системы <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_18.jpg" width="800" align="left" alt="– импульс системы тел равен произведению массы системы на скорость её центра инерции. Скорость центра инерции системы" title="– импульс системы тел равен произведению массы системы на скорость её центра инерции. Скорость центра инерции системы">
19 6. Основное уравнение динамики поступательного движения произвольной системы тел Тела, не входящие в состав рассматриваемой системы, называют внешними телами, а силы, действующие на систему со стороны этих тел – внешними силами. Силы взаимодействия между телами внутри системы, называют внутренними силами. Результирующая всех внутренних сил действующих на i-ое тело: где – т.к. i-ая точка не может действовать сама на себя. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_19.jpg" width="800" align="left" alt="6. Основное уравнение динамики поступательного движения произвольной системы тел Тела, не входящие в состав рассматриваемой системы, называют внешними телами, а силы, действующие на систему со стороны этих тел – внешними силами. Силы взаимодействия м" title="6. Основное уравнение динамики поступательного движения произвольной системы тел Тела, не входящие в состав рассматриваемой системы, называют внешними телами, а силы, действующие на систему со стороны этих тел – внешними силами. Силы взаимодействия м">
20 Обозначим – результирующая всех внешних сил приложенных к i-ой точке системы. По второму закону Ньютона можно записать систему уравнений: , <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_20.jpg" width="800" align="left" alt="Обозначим – результирующая всех внешних сил приложенных к i-ой точке системы. По второму закону Ньютона можно записать систему уравнений:...............................," title="Обозначим – результирующая всех внешних сил приложенных к i-ой точке системы. По второму закону Ньютона можно записать систему уравнений:...............................,">
21 Сложим эти уравнения и сгруппируем попарно силы и По третьему закону Ньютона, поэтому все выражения в скобках в правой части уравнения равны нулю. Тогда остаётся: Назовем – главным вектором всех внешних сил, тогда : <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_21.jpg" width="800" align="left" alt="Сложим эти уравнения и сгруппируем попарно силы и По третьему закону Ньютона, поэтому все выражения в скобках в правой части уравнения равны нулю. Тогда остаётся: Назовем – главным вектором всех внешних сил, тогда :" title="Сложим эти уравнения и сгруппируем попарно силы и По третьему закону Ньютона, поэтому все выражения в скобках в правой части уравнения равны нулю. Тогда остаётся: Назовем – главным вектором всех внешних сил, тогда :">
23 Центр механической системы движется как материальная точка, масса которой равна массе всей системы, и на которую действует сила, равная главному вектору внешних сил, приложенных к системе. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_23.jpg" width="800" align="left" alt="Центр механической системы движется как материальная точка, масса которой равна массе всей системы, и на которую действует сила, равная главному вектору внешних сил, приложенных к системе." title="Центр механической системы движется как материальная точка, масса которой равна массе всей системы, и на которую действует сила, равная главному вектору внешних сил, приложенных к системе.">
24 Теорема о движении центра масс Силы, разобьем на два типа Силы, действующие на каждую точку системы, разобьем на два типа – – внутренние силы всех внешних сил – результирующая всех внешних сил это можно записать так: В общем виде это можно записать так: m1m1 mimi m2m2 m3m3 F 12 F 13 F1iF1i (F 1 ) вш По 3 закону Ньютона Если система находится во внешнем стационарном и однородном поле, то никакими действиями внутри системы невозможно изменить движение центра масс системы <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_24.jpg" width="800" align="left" alt="Теорема о движении центра масс Силы, разобьем на два типа Силы, действующие на каждую точку системы, разобьем на два типа – – внутренние силы всех внешних сил – результирующая всех внешних сил это можно записать так: В общем виде это можно записать т" title="Теорема о движении центра масс Силы, разобьем на два типа Силы, действующие на каждую точку системы, разобьем на два типа – – внутренние силы всех внешних сил – результирующая всех внешних сил это можно записать так: В общем виде это можно записать т">
25 7. Закон сохранения импульса Механическая система называется замкнутой (или изолированной), если на неё не действуют внешние силы, т.е. она не взаимодействует с внешними телами. Строго говоря, каждая реальная система тел всегда не замкнута, т.к. подвержена, как минимум воздействию гравитационных сил. Однако если внутренние силы гораздо больше внешних, то такую систему можно считать замкнутой (например – Солнечная система). Для замкнутой системы равнодействующий вектор внешних сил тождественно равен нулю: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_25.jpg" width="800" align="left" alt="7. Закон сохранения импульса Механическая система называется замкнутой (или изолированной), если на неё не действуют внешние силы, т.е. она не взаимодействует с внешними телами. Строго говоря, каждая реальная система тел всегда не замкнута, т.к. подв" title="7. Закон сохранения импульса Механическая система называется замкнутой (или изолированной), если на неё не действуют внешние силы, т.е. она не взаимодействует с внешними телами. Строго говоря, каждая реальная система тел всегда не замкнута, т.к. подв">
26 отсюда импульс замкнутой системы не изменяется во времени. Импульс системы тел может быть представлен в виде произведения суммарной массы тел на скорость центра инерции: тогда При любых процессах, происходящих в замкнутых системах, скорость центра инерции сохраняется неизменной. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_26.jpg" width="800" align="left" alt="отсюда импульс замкнутой системы не изменяется во времени. Импульс системы тел может быть представлен в виде произведения суммарной массы тел на скорость центра инерции: тогда При любых процессах, происходящих в замкнутых системах, скорость центра ин" title="отсюда импульс замкнутой системы не изменяется во времени. Импульс системы тел может быть представлен в виде произведения суммарной массы тел на скорость центра инерции: тогда При любых процессах, происходящих в замкнутых системах, скорость центра ин">
27 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_27.jpg" width="800" align="left" alt="" title="">
28 СИЛЫ В МЕХАНИКЕ 1. Виды и категории сил в природе 2. Сила тяжести и вес тела 3. Упругие силы 4. Силы трения 5. Силы инерции –5.1. Уравнения Ньютона для неинерциальной системы отсчета –5.2. Центростремительная и центробежная силы –5.3. Сила Кориолиса <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_28.jpg" width="800" align="left" alt="СИЛЫ В МЕХАНИКЕ 1. Виды и категории сил в природе 2. Сила тяжести и вес тела 3. Упругие силы 4. Силы трения 5. Силы инерции –5.1. Уравнения Ньютона для неинерциальной системы отсчета –5.2. Центростремительная и центробежная силы –5.3. Сила Кориолиса" title="СИЛЫ В МЕХАНИКЕ 1. Виды и категории сил в природе 2. Сила тяжести и вес тела 3. Упругие силы 4. Силы трения 5. Силы инерции –5.1. Уравнения Ньютона для неинерциальной системы отсчета –5.2. Центростремительная и центробежная силы –5.3. Сила Кориолиса">
29 1. Виды и категории сил в природе В настоящее время, различают четыре типа сил или взаимодействий: гравитационные; электромагнитные; сильные (ответственное за связь частиц в ядрах) и слабые (ответственное за распад частиц) <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_29.jpg" width="800" align="left" alt="1. Виды и категории сил в природе В настоящее время, различают четыре типа сил или взаимодействий: гравитационные; электромагнитные; сильные (ответственное за связь частиц в ядрах) и слабые (ответственное за распад частиц)" title="1. Виды и категории сил в природе В настоящее время, различают четыре типа сил или взаимодействий: гравитационные; электромагнитные; сильные (ответственное за связь частиц в ядрах) и слабые (ответственное за распад частиц)">
30 Гравитационные и электромагнитные силы нельзя свести к другим, более простым силам, поэтому их называют фундаментальными. где r – расстояние между точками <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_30.jpg" width="800" align="left" alt="Гравитационные и электромагнитные силы нельзя свести к другим, более простым силам, поэтому их называют фундаментальными. где r – расстояние между точками" title="Гравитационные и электромагнитные силы нельзя свести к другим, более простым силам, поэтому их называют фундаментальными. где r – расстояние между точками">
31 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_31.jpg" width="800" align="left" alt="" title="">
32 2. Сила тяжести и вес тела Силы тяжести – сила, с которой все тела притягиваются к Земле. Вблизи поверхности Земли все тела падают с одинаковым ускорением – ускорением свободного падения g
33 Если подвесить тело или положить его на опору, то сила тяжести уравновесится силой – которую называют реакцией опоры или подвеса R. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_33.jpg" width="800" align="left" alt="Если подвесить тело или положить его на опору, то сила тяжести уравновесится силой – которую называют реакцией опоры или подвеса R." title="Если подвесить тело или положить его на опору, то сила тяжести уравновесится силой – которую называют реакцией опоры или подвеса R.">
34 По третьему закону Ньютона тело действует на подвес или опору с силой которая называется весом тела. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_34.jpg" width="800" align="left" alt="По третьему закону Ньютона тело действует на подвес или опору с силой которая называется весом тела." title="По третьему закону Ньютона тело действует на подвес или опору с силой которая называется весом тела.">
35 Вес и сила тяжести равны друг другу, но приложены к разным точкам: вес к подвесу или опоре, сила тяжести – к самому телу. Это равенство справедливо, если подвес (опора) и тело покоятся относительно Земли (или двигаются равномерно, прямолинейно). Если имеет место движение с ускорением, то справедливо соотношение: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_35.jpg" width="800" align="left" alt="Вес и сила тяжести равны друг другу, но приложены к разным точкам: вес к подвесу или опоре, сила тяжести – к самому телу. Это равенство справедливо, если подвес (опора) и тело покоятся относительно Земли (или двигаются равномерно, прямолинейно). Если" title="Вес и сила тяжести равны друг другу, но приложены к разным точкам: вес к подвесу или опоре, сила тяжести – к самому телу. Это равенство справедливо, если подвес (опора) и тело покоятся относительно Земли (или двигаются равномерно, прямолинейно). Если">
36 Вес тела может быть больше или меньше силы тяжести: Находясь внутри закрытой кабины невозможно определить, чем вызвана сила mg, тем, что кабина движется с ускорением или действием притяжения Земли. Пассажиры космического корабля, вращающегося с частотой всего 9,5 об/мин, находясь на расстоянии 10 м от оси вращения, будут чувствовать себя, как на Земле. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_36.jpg" width="800" align="left" alt="Вес тела может быть больше или меньше силы тяжести: Находясь внутри закрытой кабины невозможно определить, чем вызвана сила mg, тем, что кабина движется с ускорением или действием притяжения Земли. Пассажиры космического корабля, вращающегося с часто" title="Вес тела может быть больше или меньше силы тяжести: Находясь внутри закрытой кабины невозможно определить, чем вызвана сила mg, тем, что кабина движется с ускорением или действием притяжения Земли. Пассажиры космического корабля, вращающегося с часто">
37 3. Упругие силы Электромагнитные силы проявляют себя как упругие силы и силы трения. Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и размеры тела, то деформация называется упругой. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_37.jpg" width="800" align="left" alt="3. Упругие силы Электромагнитные силы проявляют себя как упругие силы и силы трения. Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и р" title="3. Упругие силы Электромагнитные силы проявляют себя как упругие силы и силы трения. Под действием внешних сил возникают деформации (т.е. изменение размеров и формы) тел. Если после прекращения действия внешних сил восстанавливаются прежние форма и р">
38 Рассмотрим упругие деформации. В деформированном теле возникают упругие силы, уравновешивающие внешние силы. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_38.jpg" width="800" align="left" alt="Рассмотрим упругие деформации. В деформированном теле возникают упругие силы, уравновешивающие внешние силы." title="Рассмотрим упругие деформации. В деформированном теле возникают упругие силы, уравновешивающие внешние силы.">
39 Упругие силы возникают во всей деформированной пружине. Любая часть пружины действует на другую часть с силой упругости F упр. Под действием внешней силы – F вн. пружина получает удлинение x, в результате в ней возни- кает упругая сила – F упр, уравновешивающая F вн. Удлинение пружины пропорционально внешней силе и определяется законом Гука: k – жесткость пружины.
40 Так как упругая сила отличается от внешней только знаком, т.е. то закон Гука можно записать в виде: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_40.jpg" width="800" align="left" alt="Так как упругая сила отличается от внешней только знаком, т.е. то закон Гука можно записать в виде:" title="Так как упругая сила отличается от внешней только знаком, т.е. то закон Гука можно записать в виде:">
41 Тогда полная работа, которая совершена пружиной, равна: Потенциальная энергия упругой пружины равна работе, совершенной над пружиной. Так как сила не постоянна, то элементарная работа равна <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_41.jpg" width="800" align="left" alt="Тогда полная работа, которая совершена пружиной, равна: Потенциальная энергия упругой пружины равна работе, совершенной над пружиной. Так как сила не постоянна, то элементарная работа равна" title="Тогда полная работа, которая совершена пружиной, равна: Потенциальная энергия упругой пружины равна работе, совершенной над пружиной. Так как сила не постоянна, то элементарная работа равна">
42 4. Силы трения Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя). Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ). Различают сухое и жидкое (или вязкое) трение. 42 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_42.jpg" width="800" align="left" alt="4. Силы трения Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя). Внутреннее трение наблюдается при относительном перемещении ча" title="4. Силы трения Трение подразделяется на внешнее и внутреннее. Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя). Внутреннее трение наблюдается при относительном перемещении ча">
43 Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями. Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения. Рассмотрим законы сухого трения 43 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_43.jpg" width="800" align="left" alt="Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями. Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения. Рассмотрим законы сухого трения 43" title="Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями. Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения. Рассмотрим законы сухого трения 43">
44 Подействуем на тело, внешней силой постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит внешняя сила уравновешивается некоторой силой В этом случае – и есть сила трения покоя. Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение F 0, тело начнет скользить по опоре – трение покоя F тр.пок. сменится трением скольжения F тр.ск <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_44.jpg" width="800" align="left" alt="Подействуем на тело, внешней силой постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит внешняя сила уравновешивается некоторой силой В этом случае – и есть сила трения покоя. Когда модуль внешней силы, а следовательно" title="Подействуем на тело, внешней силой постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит внешняя сила уравновешивается некоторой силой В этом случае – и есть сила трения покоя. Когда модуль внешней силы, а следовательно">
45 Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N μ 0 – коэффициент трения покоя – зависит от природы и состояния трущихся поверхностей. Аналогично и для силы трения скольжения: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_45.jpg" width="800" align="left" alt="Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N μ 0 – коэффициент трения покоя – зависит от природы и состояния трущихся поверхностей. Анало" title="Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N μ 0 – коэффициент трения покоя – зависит от природы и состояния трущихся поверхностей. Анало">
46 5. Силы инерции 5.1. Уравнение Ньютона для неинерциальных систем отсчета Законы инерции выполняются в инерциальной системе отсчета. А как описать движение тела в неинерциальной системе? Пример: вы стоите в троллейбусе спокойно. Вдруг троллейбус резко трогается, и вы невольно отклонитесь назад. Что произошло? Кто вас толкнул? <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_46.jpg" width="800" align="left" alt="5. Силы инерции 5.1. Уравнение Ньютона для неинерциальных систем отсчета Законы инерции выполняются в инерциальной системе отсчета. А как описать движение тела в неинерциальной системе? Пример: вы стоите в троллейбусе спокойно. Вдруг троллейбус резко" title="5. Силы инерции 5.1. Уравнение Ньютона для неинерциальных систем отсчета Законы инерции выполняются в инерциальной системе отсчета. А как описать движение тела в неинерциальной системе? Пример: вы стоите в троллейбусе спокойно. Вдруг троллейбус резко">
47 С точки зрения наблюдателя на Земле (в инерциальной системе отсчета), в тот момент, когда троллейбус тронулся, вы остались стоять на месте – в соответствии с первым законом Ньютона. С точки зрения сидящего в троллейбусе – вы начали двигаться назад, как если бы кто-нибудь вас толкнул. На самом деле, никто не толкнул, просто ваши ноги, связанные силами трения с троллейбусом «поехали» вперед из-под вас и вам пришлось падать назад. Можно описать ваше движение в инерционной системе отсчета. Но это не всегда просто, так как обязательно нужно вводить силы, действующие со стороны связей. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_47.jpg" width="800" align="left" alt="С точки зрения наблюдателя на Земле (в инерциальной системе отсчета), в тот момент, когда троллейбус тронулся, вы остались стоять на месте – в соответствии с первым законом Ньютона. С точки зрения сидящего в троллейбусе – вы начали двигаться назад, к" title="С точки зрения наблюдателя на Земле (в инерциальной системе отсчета), в тот момент, когда троллейбус тронулся, вы остались стоять на месте – в соответствии с первым законом Ньютона. С точки зрения сидящего в троллейбусе – вы начали двигаться назад, к">
48 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_48.jpg" width="800" align="left" alt="" title="">
49 Силы, действующие со стороны связей могут быть самыми разными и ведут себя по разному – нет единого подхода к их описанию. Силы инерции обусловлены не взаимодействием тел, а свойствами самих неинерциальных систем отсчета. На силы инерции законы Ньютона не распространяются. Можно в неинерциальной системе воспользоваться законами Ньютона, если ввести силы инерции. Силы инерции вводят специально, чтобы воспользоваться уравнениями Ньютона в неинерциальной системе. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_49.jpg" width="800" align="left" alt="Силы, действующие со стороны связей могут быть самыми разными и ведут себя по разному – нет единого подхода к их описанию. Силы инерции обусловлены не взаимодействием тел, а свойствами самих неинерциальных систем отсчета. На силы инерции законы Ньюто" title="Силы, действующие со стороны связей могут быть самыми разными и ведут себя по разному – нет единого подхода к их описанию. Силы инерции обусловлены не взаимодействием тел, а свойствами самих неинерциальных систем отсчета. На силы инерции законы Ньюто">
50 Силы инерции при поступательном движении неинерциальной системы отсчета. Введем обозначения: – ускорение тела относительно неинерциальной системы; – ускорение неинерциальной системы относительно инерциальной (относительно Земли). Тогда ускорение тела относительно инерциальной системы: второй закон Ньютона, где m – масса движущегося тела. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_50.jpg" width="800" align="left" alt="Силы инерции при поступательном движении неинерциальной системы отсчета. Введем обозначения: – ускорение тела относительно неинерциальной системы; – ускорение неинерциальной системы относительно инерциальной (относительно Земли). Тогда ускорение тела" title="Силы инерции при поступательном движении неинерциальной системы отсчета. Введем обозначения: – ускорение тела относительно неинерциальной системы; – ускорение неинерциальной системы относительно инерциальной (относительно Земли). Тогда ускорение тела">
51 Ускорение в инерциальной системе можно выразить через вт второй закон Ньютона или Мы можем и представить в соответствии с законом Ньютона (формально) <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_51.jpg" width="800" align="left" alt="Ускорение в инерциальной системе можно выразить через второй закон Ньютона или Мы можем и представить в соответствии с законом Ньютона (формально)" title="Ускорение в инерциальной системе можно выразить через второй закон Ньютона или Мы можем и представить в соответствии с законом Ньютона (формально)">
52 где – сила, направленная в сторону, противоположную ускорению неинерциальной системы. тогда получим – уравнение Ньютона для неинерциальной системы отсчета. Здесь – фиктивная сила, обусловленная свойствами системы отсчета <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_52.jpg" width="800" align="left" alt="где – сила, направленная в сторону, противоположную ускорению неинерциальной системы. тогда получим – уравнение Ньютона для неинерциальной системы отсчета. Здесь – фиктивная сила, обусловленная свойствами системы отсчета" title="где – сила, направленная в сторону, противоположную ускорению неинерциальной системы. тогда получим – уравнение Ньютона для неинерциальной системы отсчета. Здесь – фиктивная сила, обусловленная свойствами системы отсчета">
Силы инерции неинвариантны относительно перехода из одной системы отсчета в другую. Они не подчиняются закону действия и противодействия. Движения тела под действием сил инерции аналогично движению во внешнем силовом поле. Силы инерции всегда являются внешним по отношению к любому движению системы материальных тел. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_53.jpg" width="800" align="left" alt="Силы инерции неинвариантны относительно перехода из одной системы отсчета в другую. Они не подчиняются закону действия и противодействия. Движения тела под действием сил инерции аналогично движению во внешнем силовом поле. Силы инерции всегда являютс" title="Силы инерции неинвариантны относительно перехода из одной системы отсчета в другую. Они не подчиняются закону действия и противодействия. Движения тела под действием сил инерции аналогично движению во внешнем силовом поле. Силы инерции всегда являютс">
54 Силы инерции при вращательном движении неинерциальной системы отсчета. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_54.jpg" width="800" align="left" alt="Силы инерции при вращательном движении неинерциальной системы отсчета." title="Силы инерции при вращательном движении неинерциальной системы отсчета.">
55 5.2. Центростремительная и центробежная силы В каждый момент времени камень должен был бы двигаться прямолинейно по касательной к окружности. Однако он связан с осью вращения веревкой. Веревка растягивается, появляется упругая сила, действующая на камень, направленная вдоль веревки к центру вращения. Это и есть центростремительная сила (при вращении Земли вокруг оси в качестве центростремительной силы выступает сила гравитации). 55 <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_55.jpg" width="800" align="left" alt="5.2. Центростремительная и центробежная силы В каждый момент времени камень должен был бы двигаться прямолинейно по касательной к окружности. Однако он связан с осью вращения веревкой. Веревка растягивается, появляется упругая сила, действующая на ка" title="5.2. Центростремительная и центробежная силы В каждый момент времени камень должен был бы двигаться прямолинейно по касательной к окружности. Однако он связан с осью вращения веревкой. Веревка растягивается, появляется упругая сила, действующая на ка">
56 . <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_56.jpg" width="800" align="left" alt="." title=".">
57 Центростремительная сила возникла в результате действия камня на веревку, т.е. это сила, приложенная к телу (сила инерции второго рода). Сила, приложенная к связи и направленная по радиусу от центра, называется центробежной (сила инерции первого рода) Т.о. центростремительная сила приложена к вращающему телу, а центробежная сила – к связи. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_57.jpg" width="800" align="left" alt="Центростремительная сила возникла в результате действия камня на веревку, т.е. это сила, приложенная к телу (сила инерции второго рода). Сила, приложенная к связи и направленная по радиусу от центра, называется центробежной (сила инерции первого рода" title="Центростремительная сила возникла в результате действия камня на веревку, т.е. это сила, приложенная к телу (сила инерции второго рода). Сила, приложенная к связи и направленная по радиусу от центра, называется центробежной (сила инерции первого рода">
58 т.к. (здесь ω – угловая скорость вращения камня, а υ – линейная), то <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_58.jpg" width="800" align="left" alt="т.к. (здесь ω – угловая скорость вращения камня, а υ – линейная), то" title="т.к. (здесь ω – угловая скорость вращения камня, а υ – линейная), то">
59 5.3. Сила Кориолиса При движении тела относительно вращающейся системы отсчета, кроме центростремительной и центробежной сил, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции (Г. Кориолис (1792 – 1843) – французский физик). <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_59.jpg" width="800" align="left" alt="5.3. Сила Кориолиса При движении тела относительно вращающейся системы отсчета, кроме центростремительной и центробежной сил, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции (Г. Кориолис (1792 – 1843) – французский" title="5.3. Сила Кориолиса При движении тела относительно вращающейся системы отсчета, кроме центростремительной и центробежной сил, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции (Г. Кориолис (1792 – 1843) – французский">
60 Это приводит к тому, что у рек подмывается всегда правый берег в севером полушарии и левый – в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей. Сила Кориолиса, действует на тело, движущееся вдоль меридиана в северном полушарии вправо и в южном – влево. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_60.jpg" width="800" align="left" alt="Это приводит к тому, что у рек подмывается всегда правый берег в севером полушарии и левый – в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей. Сила Кориолиса, действует на тело, движущееся вдоль меридиана в северном " title="Это приводит к тому, что у рек подмывается всегда правый берег в севером полушарии и левый – в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей. Сила Кориолиса, действует на тело, движущееся вдоль меридиана в северном ">
61 Силы Кориолиса проявляются и при качаниях маятника (маятник Фуко). Для простоты предположим, что маятник расположен на полюсе: <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_61.jpg" width="800" align="left" alt="Силы Кориолиса проявляются и при качаниях маятника (маятник Фуко). Для простоты предположим, что маятник расположен на полюсе:" title="Силы Кориолиса проявляются и при качаниях маятника (маятник Фуко). Для простоты предположим, что маятник расположен на полюсе:">
62 С учетом всех сил инерции, уравнение Ньютона для неинерциальной системы отсчета примет вид: – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета; – две силы инерции, обусловленные вращательным движением системы отсчета; – ускорение тела относительно неинерциальной системы. <img itemprop="contentURL" src="http://images.myshared.ru/6/773878/slide_62.jpg" width="800" align="left" alt="С учетом всех сил инерции, уравнение Ньютона для неинерциальной системы отсчета примет вид: – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета; – две силы инерции, обусловленные вращательным движением системы отсчет" title="С учетом всех сил инерции, уравнение Ньютона для неинерциальной системы отсчета примет вид: – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета; – две силы инерции, обусловленные вращательным движением системы отсчет">
Импульс тела. Второй закон Ньютона
Импульсом, или количеством движения материальной точки имеющей массу m и движущуюся со скоростью v называют вектор K=mv. Импульс материальной точки характеризует как быстроту движения, так и ее инертность и является одной из важнейших ее динамических характеристик.
Масса материальной точки постоянна, а ее ускорение является производной от скорости по времени. Поэтому
Подставляя последнее выражение в основное уравнение динамики, получим
Это уравнение является математической формулировкой второго закона Ньютона: скорость изменения импульса тела равна действующей на нее силе.
Если на материальную точку действуют несколько сил, то во втором законе Ньютона подразумевается результирующая сила.
Рис.
1 Зависимость массы тела от скорости
Отметим, что во времена Ньютона аддитивность и неизменность массы тела были очевидны, так как масса тела определялась количеством вещества, содержащегося в теле. Однако с открытием электрона и проведением опытом по движению электрона в электрическом и магнитном поле оказалось, что основной закон динамики нарушается при скоростях электрона близких к скорости света c. Объяснение этого явления было дано в специальной теории относительности Эйнштейна. Оказывается, второй закон Ньютона будет работать и в случае движения с высокими скоростями, если масса тела будет зависеть от скорости:
где m0 — масса покоя материальной точки, то есть масса при скорости v=0. Из рисунка 1 видно, что массу движущегося тела уже нельзя отождествлять с количеством его составляющего вещества; с ростом скорости его масса возрастает хотя количество вещества в нем не изменяется. По современным представлениям масса материальной точки одновременно является мерой ее инерционных и гравитационных свойств.
В классической механике изучающей движение тел при малых скоростях, то есть когда v \ll c, массы тел можно считать постоянными и равной массам покоя.
Перепишем второй закон Ньютона в виде
d(mv) = F dt.
Вектор F dt называется элементарным импульсом силы за малый промежуток времени dt. То есть, изменение импульса материальной точки за малый промежуток времени dt равен элементарному импульсу силы за тот же промежуток времени. За конечный промежуток времени от t до t+Δt изменение импульса равно импульсу результирующей силы F за рассматриваемый промежуток времени:
Если на материальную точку действует постоянная сила F=const, то
где v0 — начальная скорость материальной точки. Приращение импульса равно
Если сила равна нулю, то импульс со временем не меняется и материальная точка движется равномерно и прямолинейно в соответствии с первым законом.
Изменение импульса за время от t1 до t2 под действием переменной силы F равно
где Fср средняя сила которой можно заменить переменную силу F, если изменение импульса под действием средней силы будет равно изменению импульса под действием переменной силы за тот же промежуток времени.
http://www.originweb.info/mechanics/newtons_second_law.html
