- •Физические основы термодинамики
- •1. Первое начало термодинамики
- •§1. Внутренняя энергия
- •§2. Теплота и работа
- •§3 I начало термодинамики
- •§2 Число степеней свободы молекулы. Закон о равномерном распределении энергии по степеням свободы молекулы
- •§3 Теплоемкость. Работа газа
- •9.3. Работа газа при его расширении
- •Основные понятия термодинамики.
- •Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы.
- •Внутренняя энергия и работа газа при расширении. закон термодинамики.
- •Теплоемкость
Внутренняя энергия системы. Число степеней свободы молекул. Распределение энергии по степеням свободы.
Внутренняя энергия идеального газа. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы
Важной характеристикой термодинамической системы является ее внутренняя энергия U – энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т.д.) и энергия взаимодействия этих частиц.
К внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.
В курсе физики уже встречалось понятие числа степеней свободы i: это число независимых координат, полностью определяющих положение тела (материальной точки, системы материальных точек) в пространстве. Так, например, положение материальной точки определяется тремя координатами (x, y, z), следовательно, i=3. Тонкий стержень имеет 5 степеней свободы (x, y, z, a, b), т.е. 3 поступательные и 2 вращательные, твердое тело имеет 6 степеней свободы (x, y, z, a, b, g), т.е. 3 поступательные и 3 вращательные.
С учетом этого для одноатомных молекул газа (He, Ne, Ar …) i=3, для двухатомных молекул газа (H2, O2, N2 …) с жесткой связью атомов i=5, для трех- и более атомных молекул газа с жесткой связью атомов (CO2, NH3 …) i=6.
Естественно, что жесткой связи между атомами не существует – атомы могут совершать колебания. С учетом этого полное число степеней свободы iå=i+2iколеб. В классической теории рассматривают молекулы с жесткой связью атомов, для них iколеб.=0.
Итак, независимо от числа степеней свободы молекул, три степени свободы всегда поступательные. Ни одна из них не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <Wk> [см.(16) в лекции 1,2], т.е.
<Wk>/3 = kT/2.
Важнейший закон классической статистической физики – закон равномерного распределения энергии по степеням свободы – утверждает: на каждую степень свободы молекулы в среднем приходится одинаковая кинетическая энергия, равная kТ/2.
Следовательно,
средняя кинетическая энергия молекулы,
имеющей i степеней свободы, <Wk>
=
kT
. (1)
Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю (т.е. молекулы между собой не взаимодействуют), то внутренняя энергия U представляет собой кинетическую энергию его молекул.
Для одного моля
,
(2)
для произвольной массы m газа
,
(3)
где М – масса моля, n=m/M – число молей.
Таким образом, внутренняя энергия идеального газа пропорциональна температуре газа и зависит от числа степеней свободы его молекул.
Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
Важной характеристикой термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях.
Внутренняя энергия — однозначная функция термодинамического состояния системы, т. е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, как система пришла в данное состояние). Это
означает, что при переходе системы из одного состояния в другое изменение внутренней энергии определяется только разностью значений внутренней энергии этих состояний и не зависит от пути перехода. В § 1 было введено понятие числа степеней свободы — числа независимых переменных (координат), полностью определяющих положение системы в пространстве. В ряде задач молекулу одноатомного газа (рис. 77, а) рассматривают как материальную точку, которой приписывают три
89
степени свободы поступательного движения. При этом энергию вращательного движения можно не учитывать (r—>0, J= mr20, Tвр =J2/20).
В классической механике молекула двухатомного газа в первом приближении рассматривается как совокупность двух материальных точек, жестко связанных недеформируемой связью (рис. 77,б). Эта система кроме трех степеней свободы поступательного движения имеет еще две степени свободы вращательного движения. Вращение вокруг третьей оси (оси, проходящей через оба атома) лишено смысла. Таким образом, двухатомный газ обладает пятью степенями свободы (i=5). Трехатомная (рис. 77,0) и многоатомная нелинейные молекулы имеют шесть степеней свободы: три поступательных и три вращательных. Естественно, что жесткой связи между атомами не существует. Поэтому для реальных молекул необходимо учитывать также степени свободы колебательного движения.
Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <0)в (43.8):
В классической статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT. Колебательная степень «обладает» вдвое большей энергией потому, что на нее приходится не только кинетическая энергия (как в случае поступательного и вращательного движений), но и потенциальная, причем средние значения кинетической и потенциальной энергий одинаковы. Таким образом, средняя энергия молекулы
где i — сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы:
i =iпост+iвращ+2iколеб.
В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы.
Так как в идеальном газе взаимная потенциальная энергия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия, отнесенная к одному молю газа, будет равна сумме кинетических энергий NA молекул:
Внутренняя энергия для произвольной массы т газа
где М — молярная масса, v — количество вещества.
Физические основы термодинамики
1. Первое начало термодинамики
§1. Внутренняя энергия
Всякая термодинамическая система в любом состоянии обладает энергией, которая называется полной энергией. Полная энергия системы складывается из кинетической энергии движения системы как целого, потенциальной энергии системы как целого и внутренней энергии.
h=0
Внутренняя
энергия системы представляет сумму
всех видов хаотического (теплового)
движения молекул: потенциальную энергию
из внутриатомных и внутриядерных
движений. Внутренняя энергия является
функцией состояния газа. Для данного
состояния газа внутренняя энергия
определяется однозначно, то есть является
определенной функцией.
При переходе из одного состояния в другое внутренняя энергия системы изменяется. Но при этом внутренняя энергия в новом состоянии не зависти от процесса, по которому система перешла в данное состояние.
§2. Теплота и работа
Возможны два различных способа изменения внутренней энергии термодинамической системы. Внутренняя энергия системы может изменяться в результате выполнения работы и в результате передачи системе тепла. Работа есть мера изменения механической энергии системы. При выполнении работы имеет место перемещения системы или отдельных макроскопических частей относительно друг друга. Например, вдвигая поршень в цилиндр, в котором находиться газ, мы сжимаем газ, в результате чего его температура повышается, т.е. изменяется внутренняя энергия газа.
Внутренняя энергия может изменяться и в результате теплообмена, т.е. сообщения газу некоторого количества теплоты Q.
Отличие между теплотой и работой состоит в том, что теплота передаётся в результате целого ряда микроскопических процессов, при которых кинетическая энергия молекул более нагретого тела при столкновениях передаётся молекулам менее нагретого тела.
Общее между теплотой и работой, что они являются функциями процесса, т. е. можно говорить о величине теплоты и роботы, когда происходит переход системы из состояния первого в состояние второе. Теплота и робота не является функцией состояния, в отличие от внутренней энергии. Нельзя говорить, чему равна работа и теплота газа в состоянии 1, но о внутренней энергии в состоянии 1 говорить можно.
§3 I начало термодинамики
Допустим,
что некоторая система (газ, заключённый
в цилиндре под поршнем), обладая внутренней
энергией, получила некоторое количество
теплоты Q,
перейдя в новое состояние,
характеризуемой внутренней энергии
U2,
совершила
работу А
над внешней средой, т. е. против внешних
сил. Количество теплоты считается
положительным, когда оно подводится к
системе, и отрицательным, когда забирается
у системы. Работа положительна, когда
она совершается газом против внешних
сил, и отрицательна, когда она совершается
над газом.
I начало термодинамики: Количество тепла (ΔQ), сообщённой системе идёт на увеличение внутренней энергии системы и на совершение системой работы (А) против внешних сил.
Запись I начало термодинамики в дифференциальной форме
dU - бесконечно малое изменение внутренней энергии системы
-
элементарная работа,
-
бесконечное малое количество теплоты.
Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии равно нуля. Тогда
т. е. вечный двигатель I рода, периодически действующий двигатель, который совершал бы большую работу, чем сообщённая ему извне энергия, невозможен (одна их формулировок I начало термодинамики).
