Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Uglevody_ustno.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.94 Mб
Скачать

Вопрос 1.

  1. способностью печени депонировать всасывающуюся из кишечника глюкозу и поставлять её по мере надобности в общий кровоток (напоминаем, что образующийся в реакциях гликогенолиза в различных тканях глюкозо-6-фосфат не способен проникать через плазматическую мембрану клеток, однако гепатоциты способны синтезировать глюкозо-6-фосфатазу, которая отщепляет фосфат, образуя свободную глюкозу, - последняя легко покидает клетки печени;  2. образовывать глюкозу из неуглеводных продуктов (глюконеогенез).  3. превращать другие гексозы (галактозу и фруктозу) в глюкозу.  Всасывание глюкозы из кишечника сопровождается одновременным выбросом инсулина, стимулирующим синтез гликогена в печени и ускоряющим в ней реакции окислительного распада глюкозы. В перерывах между приёмами пищи (низкий уровень глюкозы → низкая концентрация инсулина) в печени активируются реакции гликогенолиза, благодаря которым предотвращается развитие гипогликемии. При длительном голодании вначале используются гликогенные аминокислоты (глюконеогенез), а затем распадаются депонированные жиры (образование кетоновых тел).

Для предотвращения чрезмерного повышения концентрации глюкозы в крови при пищеварении основное значение имеет потребление глюкозы печенью и мышцами. Более половины всей глюкозы, поступающей из кишечника в воротную вену, поглощается печенью. Большая часть этого количества откладывается в печени в форме гликогена, остальная часть превращается в жиры, окисляется, обеспечивая синтез АТФ. Другая часть глюкозы попадает в кровоток. 2/3 этого количества поглощается мышцами и жировой тканью. Глюкоза в мышцах откладывается в форме гликогена, в жировой ткани превращается в жиры.

При голодании в течение первых суток исчерпываются запасы гликогена, и дальнейшим источником глюкозы служит только глюконеогенез. Глюконеогенез при этом ускоряется, а гликолиз замедляется вследствие низкой концентрации инсулина и высокой концентрации глюкагона. Также снижается количество гликолитических ферментов и повышается количество ферментов глюконеогенеза. При голодании глюкоза не используется мышечными и жировыми клетками, поскольку в отсутствие инсулина не проникает в них.

Как в период покоя, так и во время продолжительной физической нагрузки сначала источником глюкозы для мышц служит гликоген, запасенный в самих мышцах, а затем глюкоза крови.

Гексокиназа способствует превращению глюкозы в активную форму (присоединение остатка фосфорной кислоты.

Глюкозо-6-фосфатаза, наоборот, способствует отщеплению остатка фосфорной кислоты.

Вопрос 2.

Пентозофосфатный путь представляет собой прямое окисление глюкозы и протекает в цитоплазме клеток.

Пентозофосфатный путь называют также апотомическим путём, так как в его реакциях происходит укорочение углеродной цепи гексозы на один атом, который включается в молекулу СО2.

В пентозофосфатном пути можно выделить две фазы - окислительную и неокислительную.

Исходным субстратом окислительной фазы является глюкозо-6-фосфат, который непосредственно подвергается дегидрированию с участием НАДФ-зависимой дегидрогеназы. Продукт реакции гидролизуется, а образующийся 6-фосфоглюконат дегидрируется и декарбоксилируется. Таким образом, происходит укорочение углеродной цепи моносахарида на один углеродный атом («апотомия»), и образуется рибулозо-5-фосфат.

Неокислительная фаза пентозофосфатного пути начинается с реакций изомеризации. В ходе этих реакций одна часть рибулозо-5-фосфата изомеризуется в рибозо-5-фосфат, другая - в ксилулозо-5-фосфат .

Следуюшая реакция протекает при участии фермента транскетолазы, коферментом которой является тиаминдифосфат. В этой реакции происходит перенос двухуглеродного фрагмента с ксилулозо-5-фосфата на рибозо-5-фосфат:

Образовавшиеся продукты взаимодействуют между собой в реакции, которая катализируется трансальдолазой и заключается а переносе остатка дигидроксиацетона на глицеральдегид-3-фосфат.

Продукт этой реакции эритрозо-4-фосфат участвует во второй транскетолазной реакции вместе со следующей молекулой ксилулозо-5-фосфата:

Таким образом, три молекулы пентозофосфатов в результате реакций неокислительной стадии превращаются в две молекулы фруктозо-6-фосфата и одну молекулу глицеральдегид-3-фосфата. Фруктозо-6-фосфат может изомеризоваться в глюкозо-6-фосфат, а глицеральдегид-3-фосфат может подвергаться окислению в гликолизе или изомеризоваться в дигидроксиацетонфосфат. Последний вместе с другой молекулой глицеральдегид-3-фосфата может образовывать фруктозо-1,6-дифосфат, который также способен переходить в глюкозо-6-фосфат.

Взаимосвязь пентозофосфатного цикла и гликолиза:

Оба превращения углеводов тесно связаны, продукты пентозофосфатного пути — фруктозо-6-фосфата и глицеральдегид-3-фосфат — являются также метаболитами гликолиза, поэтому они вовлекаются в гликолизе и превращаются его ферментами. Две молекулы фруктозо-6-фосфата могут регенерироваться в две молекулы глюкозо-6-фосфата с помощью глюкофосфатизомеразы — фермента гликолиза. В этом случае пентозофосфатный путь выглядит как цикл. Другой продукт — глицеральдегид-3-фосфат, включившись в гликолиз, превращается в анаэробных условиях в лактат, а в аэробных сгорает до CO2 и H2O.

Пентозофосфатный путь выполняет в организме две важнейшие метаболические функции:

  1. он является главным источником НАДФН для синтеза жирных кислот, холестерола, стероидных гормонов, микросомального окисления; в эритроцитах НАДФН используется для восстановления глутатиона – вещества, препятствующего пероксидному гемолизу - роль ПФП в жировой ткани и эритроцитах.

  1. он является главным источником пентоз для синтеза нуклеотидов, нуклеиновых кислот, коферментов (АТФ, НАД, НАДФ, КоА-SН и др.) - роль ПФП в в делящихся клетках.

Регуляция:

Судьба глюкозо-6-фосфата — вступит ли он в гликолиз или пентозофосфатный путь — определяется потребностями клетки в данный момент, а также концентрацией НАДФ+ в цитозоле. Без наличия акцептора электронов первая реакция пентозофосфатного пути (катализируемая глюкозо-6-фосфатдегидрогеназой) не будет идти. Когда клетка быстро переводит НАДФН в НАДФ+ в биосинтетических восстановительных реакциях, уровень НАДФ+ поднимается, аллостерически стимулируя глюкозо-6-фосфатдегидрогензазу и тем самым увеличивая ток глюкозо-6-фосфата через пентозофосфатный путь. Когда потребление НАДФН замедляется, уровень НАДФ+ снижается, и глюкозо-6-фосфат утилизируется гликолитически.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]