Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Анализ количественной маркетинговой информации.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
41.49 Кб
Скачать

3. Корреляционный и регрессионный анализ.

Корреляционный анализ — это количественный метод определения тесноты и направления взаимосвязи между выборочными переменными величинами. 

Регрессионный анализ — это количественный метод определения вида математической функции в причинно-следственной зависимости между переменными величинами.

Корреляционный анализ - дает возможность рассчитывать уровень доверия к результатам анализа. В процессе этого анализа рассчитываются показатели корреляции, к которым относятся коэффициенты корреляции и корреляционные отношения. При сравнении функциональных и корреляционных зависимостей следует иметь в виду, что при наличии функциональной зависимости между признаками можно, зная величину факторного признака, точно определить величину результативного признака. При наличии же корреляционной зависимости устанавливается лишь тенденция изменения результативного признака при изменении величины факторного признака. В отличие от жесткости функциональной связи корреляционные связи характеризуются множеством причин и следствий и устанавливаются лишь их тенденции. Простейшим приемом обнаружения связи является сопоставление двух параллельных рядов. Из общего анализа видно, что увеличение количества промоакций способствует увеличению объема продаж. Характер распределения указывает на то, что объем сбыта растет по мере увеличения количества промоакций. Следовательно, имеется положительная связь между факторами. Регрессионный анализ даст возможность ответить на вопрос о количественной мере влияния различных факторов, например на спрос (объем возможной продажи). Он представляет собой подбор и решение математических уравнений, описывающих исследуемые зависимости. Элементы рынка зависят от многих факторов, и формы этих зависимостей могут быть самыми разнообразными. Поэтому регрессионный анализ начинают с построения графика зависимости, на его основе подбирают подходящее математическое уравнение, а затем находят параметры этого уравнения путем решения системы нормальных уравнений. Регрессионный анализ используется для изучения связей между зависимой переменной и одной или несколькими независимыми переменными, определения тесноты связи и математической зависимости между ними, предсказания значения зависимой переменной. Простейшей системой корреляционной связи является линейная связь между двумя признаками, или парная линейная корреляция. Уравнение парной линейной корреляционной связи называется уравнением парной регрессии:

где  – теоретическое значение результативного признака, представляющее среднее значение результативного признакау при определённом значении факторного признака х;

a – свободный член уравнения (параметр уравнения не имеющий экономического смысла);

b – коэффициент регрессии, который выражает количественную зависимость между факторами и показывает среднее изменение результативного признака при изменении факторного на единицу.

Построение корреляционно-регрессионных моделей, какими бы сложными они не были, само по себе не вскрывает полностью всех причинно-следственных связей. Основой их адекватности является предварительный качественный анализ, основанный на учёте специфики и особенностей исследуемых социально-экономических явлений и процессов.

Регрессионный анализ - статистический метод установления зависимости между независимыми и зависимыми переменными. Регрессионный анализ на основе построенного уравнения регрессии определяет вклад каждой независимой переменной в изменение изучаемой (прогнозируемой) зависимой переменной величины. В маркетинге часто используется для прогнозирования спроса. Используется для:

 Определение факторов, влияющих на зависимую переменную (например, что в наибольшей степени влияет на капитал бренда).

 Выявление важных и неважных факторов, анализ заявленной и реальной важности.

 Построение регрессионных уравнений и моделей.

Принцип работы: На входе анализа – одна зависимая переменная и несколько независимых переменных, которые могут влиять на зависимую. Все переменные должны быть измерены по интервальным или дихотомическим шкалам. В случае, если в анализ необходимо включить порядковые переменные (например, степень согласия с рядом высказываний, измеренную по 5-балльной шкале), их необходимо предварительно оцифровать (с помощью статистического метода перекодировать в интервальные). Алгоритм простой линейной регрессии выявляет степени влияния независимых переменных на зависимую и выдаёт регрессионное уравнение вида Y = а0 + b1X1 + b2X2…+…bnXn, где Y – зависимая переменная, а0 – константа, среднее значение Y, если каждая независимая переменная равна 0, Xn – независимые переменные, bn – коэффициенты влияния независимых.

Итог: Коэффициенты влияния показывают, какие из независимых переменных влияют на зависимую положительно, а какие отрицательно, а также какова степень этого влияния. В простой линейной регрессии коэффициент, больший 0, свидетельствует о положительном влиянии данной независимой переменной на зависимую, а коэффициент, меньший 0 – об отрицательной.

С помощью регрессионного уравнения можно моделировать разные комбинации независимых переменных и предсказывать, какое значение примет в этих случаях зависимая переменная.

Выявление факторов, способных наиболее сильно влиять на целевые маркетинговые показатели. В итоге мы получаем возможность концентрировать усилия на развитии тех параметров, которые способны улучшить ситуацию, и устранении тех, которые ухудшают целевой показатель.