- •Роли и функции отдельных химических элементов и воды в клетках и организмах эукариот Доклад
- •Лекция № 7. Эукариотическая клетка: строение и функции органоидов
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 1
- •Вопрос 2
- •Вопрос 1
- •Вопрос 1. А какова концентрация протонов при рН 8,5? при рН 8,7? Как её вычислить?
- •Вопрос 2. Объем клетки бактерии — около 2 мкм³, рН цитоплазмы — 7. Сколько протонов содержится в этой клетке?
- •Вопрос 1
- •Вопрос 2
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.
- •Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.
- •Органические вещества клетки: липиды, атф, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.
- •Особенности строения клеток прокариот и эукариот.
- •Транспорт молекул через мембраны
- •Рецепторная функция и ее механизм.
- •Структура и функции клеточных контактов.
- •Локомоторная и индивидуализирующая функции пак.
- •Органеллы общего значения. Эндоплазматическая сеть.
- •Комплекс Гольджи.
- •Накопительную
- •Секреторную
- •Агрегационную
- •Митохондрии.
- •Рибосомы.
- •Клеточный центр.
- •Органеллы специального значения.
- •Ядро клетки. Строение и функции.
- •Биология
- •Раздел 1 происхождение и начальные этапы развития жизни на земле
- •Тема 1.1 Многообразие живого мира. Основные свойства живого
- •Тема 1.2 Возникновение жизни на Земле
- •Раздел 2 Цитология – учение о клетке
- •Тема 2.1 Химическая организация клетки. Макро- и микроэлементы
- •Тема 2.2 Строение и функции клетки
- •Тема 2.2.1 Комплекс Гольджи, лизосомы, митохондрии, рибосомы, клеточный центр; органоиды движения
- •Тема 2.3 Обмен веществ и превращение энергии в клетке
- •Тема 2.3.1 Пластический и энергетический обмен веществ в клетке
- •Тема 2.4 Деление клеток
- •Раздел 3 размножение и индивидальное развитие организмов
- •Тема 3.1 Формы размножения организмов
- •Тема 3.2 Эмбриональное развитие организмов
- •Тема 3.3 Постэмбриональное развитие
- •Раздел 4 Основы генетики и селекции
- •Тема 4.1 Основные понятия генетики
- •Тема 4.2 Основные закономерности наследственности
- •Тема 4.2.1 Неполное доминирование генов
- •Тема 4.2.2 III закон Менделя - закон независимого комбинирования признаков
- •Тема 4.2.3 Закон т. Моргана - хромосомная теория наследственности
- •Тема 4.3 Основные закономерности изменчивости
- •Тема 4.3.1 Классификация мутаций
- •Тема 4.3.2 Фенотипическая изменчивость (модификационная)
- •Тема 4.4 Селекция животных, растений и микроорганизмов
- •Тема 4.4.1 Самоопыление перекрёстно-опыляемых культур. Гетерозис
- •Тема 4.4.2 Работы и.В. Мичурина
- •Раздел 5 Эволюционное учение
- •Тема 5.1 Общая характеристика биологии в додарвиновский период
- •Тема 5.2 Дарвинизм
- •Тема 5.2.1 Размножение организмов в геометрической прогрессии. Борьба за существование и ее виды
- •Тема 5.2.2 Относительность приспособленности организмов. Вид – элементарная эволюционная единица
- •Тема 5.3 Микроэволюция
- •Тема 5.4 Макроэволюция. Биологические последствия приобретения приспособлений
- •Тема 5.5 Развитие органического мира
- •Тема 5.5.1 Низшие растения. Развитие жизни в палеозойскую эру
- •Тема 5.5.2 Появление сосудистых растений. Появление и расцвет земноводных
- •Тема 5.5.3 Расцвет класса птиц. Развитие плацентарных млекопитающих
- •Тема 5.6 Происхождение человека
- •Тема 5.6.1 Человеческие расы, единство их происхождения
- •Список литературы
- •Содержание
- •Тема 1. История цитологии. Методы изучения клетки.. 2
- •Тема 2. Строение клетки.. 32
- •Тема 3. Клетки и организмы... 60
- •Тема 4. Химия жизни.. 78
- •Тема 5. Генетическая программа организма.. 99
- •Тема 7. Функционирование клетки.. 134
- •Тема 1. История цитологии. Методы изучения клетки
- •1.3. Практическое задание
- •Тема 2. Строение клетки
- •Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.
- •Накопительную
- •Секреторную
- •Агрегационную
- •Митохондрии.
- •Рибосомы.
- •Клеточный центр.
- •Закон расщепления, или второй закон Менделя
- •Закон чистоты гамет
- •Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
- •Лекция №18. Сцепленное наследование
- •Хромосомное определение пола
- •Наследование признаков, сцепленных с полом
- •Полное доминирование
- •Неполное доминирование
- •Аллельное исключение
- •Лекция №21. Изменчивость
- •Хромосомные мутации
- •Модификационная изменчивость
- •Генеалогический метод
- •Цитогенетический метод
- •Закон Харди-Вайнберга
- •Отдаленная гибридизация страница 1
- •Отдаленная гибридизация
- •Роль и функции отдельных химических элементов.
- •Тема 4. "Химический состав клетки".
Вопрос 1
Почему практически все животные используют жир в качестве основного запасного вещества практически во всех клетках и тканях, кроме яйцеклеток, а растения, как правило, запасают крахмал и только в семенах многие из них используют жиры? Подумайте, с чем связаны исключения; это поможет вам ответить на основной вопрос.
При окислении жира выделяется так называемая «метаболическая» вода, так что запасы жира отчасти служат и запасами воды.
Уменьшение плотности
У самых разных водных организмов — от одноклеточных диатомовых водорослей до гигантских акул — жир служит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.
Вопрос 2
Плотность воздуха примерно в 600 раз меньше плотности воды, и некоторые организмы используют воздушные пузыри как поплавки (например, у многих рыб есть плавательный пузырь). В чём состоят возможные преимущества жирового «поплавка» по сравнению с воздушным?
Теплоизоляция (у теплокровных)
Часто жир служит теплоизоляцией для теплокровных животных. Особенно это важно для таких животных, как киты или тюлени, много времени проводящих в холодной воде. У них подкожный слой жира особенно толстый.
Вопрос 3
Почему тюлени имеют более толстый слой подкожного жира, чем, например, волк или белый медведь? Ведь они бывают активны при температуре ниже −30оС, а температура воды, в которой живут тюлени, всегда выше 0оС.
Вопрос 4
У некоторых животных жир запасается не под кожей, а в определенных органах (на определенных участках тела). Что это за животные? Как эта особенность связана с их образом жизни?
Механическая защита
Толстый подкожный слой жира — довольно надежная защита внутренних органов от механических повреждений при ударах.
Фосфолипиды[править]
Фосфатидилхолин― один из самых распространенных фосфолипидов клеточных мембран
Фосфолипиды похожи на нейтральные жиры тем, что в их состав тоже входят остатки глицерина и жирных кислот. Но фосфолипиды отличаются от нейтральных жиров тем, что в состав фосфолипидов входят только два остатка жирной кислоты. Третья эфирная связь образуется между глицерином и остатком фосфорной кислоты (фосфатом), к которому присоединена группа атомов, разная у различных фосфолипидов (радикал), содержащая обычно положительно заряженный атом азота (см.рис.).
Эта часть молекулы фосфолипидов («голова») гидрофильна, а состоящие из жирных кислот «хвосты» гидрофобны. Таким образом, фосфолипиды — типичные амфифильные вещества (см. Взаимодействие фосфолипидов с водой).
Другие группы липидов[править]
Углеводы, их функции[править]
Углево́ды — общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Причиной этого является то, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
В животных клетках углеводы составляют не более 5 % сухой массы, а в некоторых растительных(например, клубни картофеля) их содержание достигает 90 % сухой массы.
По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (олигосахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием простых углеводов, мономеров.
Биологическое значение углеводов:
Углеводы выполняют структурную функцию, то есть участвуют в построении различных клеточных структур (например, клеточных стенок растений.
Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).
Углеводы выполняют пластическую функцию — хранятся в виде запаса питательных веществ, а также входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК.
Углеводы являются основным энергетическим материалом. При окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
Углеводы участвуют в обеспечении осмотического давления и осморегуляции. Так, в крови содержится 100—110 мг/% глюкозы. От концентрации глюкозы зависит осмотическое давление крови.
Углеводы выполняют рецепторную функцию — многие олигосахариды входят в состав воспринимающей части клеточных рецепторов или молекул-лигандов.
В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.
Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления.
Моносахариды[править]
Моносахариды хорошо растворяются в воде. Многие из них синтезируются в клетках растений.
α-глюкоза
Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Глюкоза С6Н12О6 присутствует в клетках всех организмов и является одним из источников энергии для животных. У человека глюкоза переносится кровью и опглощается клетками с помощью нескольких белков-транспортеров. Поглощение глюкозы клетками регулирует гормон инсулин.
Дисахариды[править]
Дисахариды — это общее название подкласса олигосахаридов. Молекула дисахарида состоит из двух молекул моносахаридов, которые соединены гликозидной связью. Дисахариды образуются в результате реакции конденсации между двумя моносахаридами, обычно гексозами. При реакции конденсации происходит удаление воды. После соединения моносахаридных единиц их называют остатками. Наиболее распространенные дисахариды — это лактоза и сахароза. Также к дисахаридам относится мальтоза.
Олигосахариды[править]
Структура олигосахаридов H-антигена, отвечающего за группы крови системы АВО
Олигосахариды — это олигомеры, состоящие из нескольких (обычно от 3 до 10, не более 20) мономеров — моносахаридов, связанных между собой гликозидной связью. В отличие от них полисахариды состоят из десятков, сотен или тысяч моносахаридов. Дисахариды иногда считают частным случаем олигосахаридов.
Многие олигосахариды соединены либо с белками (тогда образуются гликопротеины), либо с липидами (образуются гликолипиды).
Олигосахариды часто служат «метками» при внутриклеточном транспорте белков. Эти «метки», опознаваемые белками-рецепторами, позволяют доставить белок внутри мембранного пузырька в нужный компартмент клетки.
Специфические олигосахариды (входящие в состав гликопротеидов) на поверхности эритроцитов определяю группу крови человека.
Многие рецепторы плазмалеммы — это гликопротеиды, в состав которых входят специфичные олигосахариды. Видимо, они участвуют в «опознавании» и связывании сигнальных молекул.
Заякоренные на мембране олигосахариды образуют гликокаликс — слой на наружной поверхности животных клеток. Толщина этого слоя от 15 до 150 нм. В хорошо развитом гликокаликсе на поверхности энтероцитов содержатся пищеварительные ферменты и происходит один их этапов пристеночного пищеварения.
Наиболее распространенные полисахариды — целлюлоза, крахмал и гликоген[править]
Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. Важнейшие (для человека, а возможно, и для всей биосферы) полисахариды — целлюлоза, крахмал и гликоген.
Схема строения молекулы целлюлозы. Атомы углерода показаны чёрным, кислорода — красным, водорода — белым.
Целлюлоза — основной компонент клеточных стенок растений и главная пища травоядных животных[править]
Целлюлоза — гомополимер. Её молекула состоит из остатков молекул глюкозы, которая образуется при кислотном гидролизе целлюлозы (под действием сильных кислот при высокой температуре):
(C6H10O5)n + nH2O -> nC6H12O6
Целлюлоза — линейный полимер. Молекулы целлюлозы представляют собой длинные нити, содержащие 300-10.000 остатков глюкозы, без боковых ответвлений. Эти нити соединены между собой множеством водородных связей, что придает целлюлозе большую механическую прочность. Водородные связи соединяют молекулы целлюлозы в волокна — фибриллы.
Целлюлоза нерастворима в воде, но очень гидрофильна.
Целлюлоза — один из главных компонентов клеточных стенок растений.
Считается, что в составе биомассы целлюлозы больше, чем любого другого вещества. В растительной биомассе целлюлозы около трети, в древесине — 50 %, в хлопковой вате — около 90 %.
Её разновидности (или похожие на неё вещества)содержатся в клеточных стенках многих протистов и некоторых бактерий. Покровы асцидий пропитаны похожим на целлюлозу веществом туницином; видимо, это единственный случай синтеза целлюлозы животными.
Целлюлозой питаются многочисленные организмы — бактерии, грибы, протисты и животные. Целлюлоза — главный источник питательных веществ для большинства травоядных животных. У млекопитающих (как и у большинства других животных) нет ферментов, способных расщеплять целлюлозу. Однако многие травоядные животные (например, жвачные) имеют в пищеварительном тракте бактерий-симбионтов, которые расщепляют и помогают хозяевам усваивать этот полисахарид.
Крахмал — основное запасное вещество растений и главная пища для человека[править]
Структура амилозы
Структура амилопектина
Крахмал, как и целлюлоза, состоит из остатков глюкозы. Это — смесь двух полисахаридов, амилозы и амилопектина. Обычно в крахмале 20-25 % амилозы и 75-80 % амилопектина.
Амилоза — длинные линейные цепочки остатков глюкозы, соединенных 1,4-связью (связь между первых и четвертым атомами углерода). Как правило, в молекуле амилозы от 300 до 3.000 остатков глюкозы. В воде амилоза хорошо растворяется. Именно амилоза дает синее окрашивание с раствором иода.
Амилопектин представляет собой разветвленные цепочки. В точках ветвления, отстоящих в среднем на 25-30 остатков глюкозы, имеются не только 1,4-, но и 1,6-связи. Молекула амилопектина содержит от 2.000 до 200.000 остатков глюкозы. С раствором иода амилопектин даёт красноватое окрашивание.
Гликоген используется для запасания энергии в клетках животных[править]
Гликоген по строению очень похож на амилопектин. Он отличается только большей разветвленностью молекулы (точки ветвления отстоят в среднем на 8-12 остатков). В клетках животных и грибов гликоген накапливается как запасное питательное вещество, которое легко превратить в глюкозу. У человека гликоген запасается в печени (до 8 % сырой массы) и скелетных мышцах (1-2 % сырой массы).
Нуклеиновые кислоты, их функции[править]
ДНК — носитель наследственной информации[править]
Дезоксирибонуклеи́новая кислота́ (ДНК) — один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической информации. Основная роль ДНК в клетках — долговременное хранение и передача из поколения в поколение информации о структуре РНК и белков.
В клетках эукариот ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и w:пластидах). В клетках прокариот кольцевая (за редкими исключениями) молекула ДНК, так называемый генофор, входит в состав нуклеоида.
У прокариот и у низших эукариот (например, у дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. В клетках молекулы ДНК всегда двухцепочечные, то есть состоят из двух цепей нуклеотидов. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
Строение нуклеотидов
Структура рибозы, показана нумерация атомов углерода (обратите внимание, что в состав нулеотидов ДНК входит дезоксирибоза).
ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков, нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы (остатка фосфорной кислоты). Связи между нуклеотидами в одной цепи ковалентные, они образуются за счёт дезоксирибозы и фосфатной группы. Говорят, что за счет ковалентных связей образуется «сахарофосфатный остов» молекулы.
В подавляющем большинстве случаев макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу; только некоторые вирусы содержат одноцепочечную ДНК.
Размер генома широко варьирует среди различных организмов
ДНК — это длинная полимерная молекула, состоящая из четырех типов мономеров, нуклеотидов[43].
Но что значит «длинная»? Длина ДНК из митохондрий человека — около 16.000 п.н. (пар нуклеотидов). Характерный размер ДНК вируса — около 100.000 п.н., бактерий — от 500.000 до 5.000.000 п.н. (это — размер одной молекулы ДНК). В геноме человека около 3.000.000.000 п.н., распределенных по 23 хромосомам. Это значит, что средняя длина молекулы ДНК из ядра человеческой клетки — более 100.000.000 п.н.!
Длина всех молекул ДНК двойного набора хромосом в одной клетке человека равна примерно 2 м. Тело взрослого человека состоит примерно из 5·101313 — 10·1013 клеток. Расчеты показывают, что общая длина молекул ДНК всех клеток одного человека около 1011 км, что примерно в тысячу раз больше расстояния от Земли до Солнца.
Образование связей между основаниями
Между азотистыми основаниями двух разных цепей образуются водородные связи, которые удерживают вместе две цепи. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В зависимости от концентрации ионов и нуклеотидного состава молекулы, двойная спираль ДНК в живых организмах существует в разных формах. На рисунке (слева направо) представлены A, B и Z формы. Модель Уотсона и Крика предсказала существование наиболее распространенной В-формы
В ДНК встречается четыре вида азотистых оснований: аденин, гуанин, тимин и цитозин. Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином.
Биологический закон, в соответствии с которым установлены количественные соотношения между азотистыми основаниями разных типов, назван правилом Чаргаффа в честь ученого биохимика Эрвина Чаргаффа, под руководством которого были обнаружены закономерности в соотношении нуклеотидов. Для того, чтобы определить точные количественные соотношения нуклеотидов, Чаргафф разделил нуклеотиды ДНК методом бумажной хроматографии. Ему удалось выявить три закономерности:
Число аденинов равно числу тиминов, а число гуанинов — числу цитозинов: А=Т, Г=Ц
Число пуринов равно числу пиримидинов: А+Г=Т+Ц
Число аденина и цитозина равно числу гуанина и тимина: А+Ц=Г+Т
Соотношение комплементарных нуклеотидов может быть различным у разных ДНК. В одних ДНК могут преобладать пары аденин-тимин, а в других — гуанин-цитозин. На основе правила Чаргаффа можно сделать вывод, что состав нуклеотидов в разных ДНК отличается лишь суммарным числом комплементарных оснований.
Cтроение двойной цепи ДНК
Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи. Такое специфическое связывание называется комплементарным. Пурины (основания, которые состоят из двух колец и имеют более крупные размеры — аденин и гуанин) комплементарны пиримидинам (тимину и цитозину, которые состоят из одного кольца и меньше по размерам): аденин образует связи только с тимином, а цитозин — с гуанином. Благодаря этому каждая пара оснований имеет «стандартные» размеры, а вся спираль ДНК сохраняет одинаковый диаметр и регулярную структуру.
В двойной спирали цепочки также связаны с помощью гидрофобных связей и стэкинга, которые не зависят от последовательности оснований ДНК.
Последовательность нуклеотидов позволяет «кодировать» информацию и составляет генетический код. Прежде всего в ДНК закодирована информация о различных типах РНК. Для реализации наследственной информации наиболее важны информационные, или матричные РНК (мРНК), рибосомальные РНК (рРНК) и транспортные РНК (тРНК). На информационную РНК «переписывается» содержащаяся в ДНК информация о последовательности аминокислот в белках.
Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции).
В одной цепи ДНК последовательность нуклеотидов (порядок их чередования) может быть любым. Поэтому молекулы ДНК практически бесконечно разнообразны. Разные виды живых организмов и разные особи одного вида различаются, в частности, порядком расположения нуклеотидов в ДНК. Комплементарность двойной спирали означает, что информация, содержащаяся в одной цепи, содержится и в другой цепи (порядок нуклеотидов одной цепи однозначно задает порядок расположения нуклеотидов в противоположной, комплементарной цепи). Такое «дублирование» информации очень важно для удвоения ДНК, репарации (исправления повреждений в ДНК) и всех остальных функций ДНК в живых организмах.
Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции. Кроме того, в геноме эукариот часто встречаются участки, принадлежащие «генетическим паразитам», например, транспозонам.
Так как водородные связи слабые, они легко разрываются и восстанавливаются. Цепочки двойной спирали могут расходиться как замок-молния под действием ферментов — хеликаз. Разрыв водородных связей необходим для процессов удвоения ДНК.
Разные пары оснований образуют разное количество водородных связей. Аденин и тимин связаны двумя, а гуанин и цитозин — тремя водородными связями, поэтому на разрыв ГЦ-пары требуется больше энергии, чем на разрыв АТ-пары.
Две цепи одной спирали ДНК также расходятся (диссоциируют) при высокой температуре. Процент ГЦ-пар и длина молекулы ДНК определяют количество энергии, необходимой для разделения цепей: длинные молекулы ДНК с большим содержанием ГЦ более тугоплавки.
Части молекул ДНК, которые из-за их функций должны быть легко разделяемы, например ТАТА последовательность в бактериальных промоторах, обычно содержат большое количество А и Т.
Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.
Разные типы молекул РНК выполняют различные функции в клетке[править]
Рибонуклеи́новые кисло́ты (РНК) — нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания — аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.
В клетках эукариот, как выяснилось за последние десятилетия, есть множество разных типов молекул РНК, многие из которых никогда не покидают ядра (мяРНК, малые ядерные РНК). Функции многих из них не известны. Другие малые РНК (например, siРНК) участвуют в процессе РНК-интерференции.
Главную роль в процессе синтеза белка играют три типа РНК:
информационная РНК, или иРНК (сейчас её всё чаще называют мРНК — от англ. messenger RNA, хотя по-русски «м» чаще расшифровывают как «матричная»);
транспортная РНК, или тРНК;
рибосомальная РНК, или рРНК.
Все эти молекулы РНК, как и другие типы РНК, синтезируются на матрице ДНК и закодированы в специальных генах. Гены, которые кодируют иРНК, кодируют также и белки, поскольку иРНК содержит информацию о последовательности аминокислот в одном или нескольких белках. Гены, которые кодируют другие типы РНК, не кодируют белков. Поэтому с современных позиций правильнее определять ген как участок ДНК, кодирующий одну молекулу РНК (а не белок).
Белки, их функции[править]
-Без белка жить можно,- сказал я,- а вот как он живет без потрохов?
-А вот товарищ Амперян говорит, что без белка жить нельзя,- сказал Витька, заставляя струю табачного дыма сворачиваться в смерч и ходить по комнате, огибая предметы.
-Я говорю, что жизнь- это белок,- возразил Эдик.
-Не ощущаю разницы,- сказал Витька.- Ты говоришь, что если нет белка, то нет и жизни.
А. и Б. Стругацкие «Понедельник начинается в субботу»
Мономеры белков — аминокислоты. Разнообразие и химические свойства аминокислот[править]
Структура аминокислоты с аминогруппой слева и карбоксильной группой справа. R — радикал (группа атомов, различная у разных аминокислот)
Для синтеза белков используются двадцать стандартных аминокислот: именно они закодированы в ДНК триплетами генетического кода. Примечательно, что живые организмы используют в основном L-аминокислоты.
У некоторых организмов триплеты могут кодировать и «неканонические», нестандартные аминокислоты (например, селеноцистеин). Некоторые аминокислоты могут (обычно при участии ферментов) химически модифицироваться после синтеза белков, так что в составе «зрелых» белков обнаруживается более 20 разновидностей аминокислот.
Аминокислоты обычно присутствуют в растворах в виде цвиттер-ионов и являются амфолитами. Амфолитами называют молекулы, в структуре которых присутствуют как кислотные, так и основные группы, существующие в виде цвиттер-ионов при определённых значениях pH. Этот pH обозначается как изоэлектрическая точка молекулы.
Амфолиты образуют буферные растворы. Благодаря способности к выборочной ионизации они противодействуют изменению pH при добавлении кислоты или основания. В присутствии кислот они принимают на себя протоны, удаляя последние из раствора, и противодействуют повышению его кислотности. При добавлении оснований амфолиты высвобождают ионы водорода в раствор, препятствуя возрастанию pH, и тем сохраняя его равновесие.
[44] Физическиe и химичeскиe cвойства аминокислот
Функции аминокислот разнообразны[править]
Аминокислоты играют важнейшую роль в обмене веществ.
Кроме того, что аминокислоты служат мономерами для синтеза белков, они входят в состав некоторых небелковых веществ — муреина, некоторых антибиотиков и др. Глицин и глутаминовая кислота — важные нейромедиаторы.
Выделяют несколько уровней укладки белковых молекул[править]
Выделяют четыре основных уровня укладки белковых молекул (уровни структуры белка):
Первичная структура — последовательность аминокислот в полипептидной цепи.
Вторичная структура — локальное упорядочивание фрагментов полипептидной цепи, стабилизированное водородными связями и гидрофобными взаимодействиями.
Третичная структура — пространственное строение полипептидной цепи; взаимное расположение элементов вторичной структуры, стабилизированное различными типами связей.
Четверичная структура — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.
Уровни структуры белков: 1 — первичная, 2 — вторичная, 3 — третичная, 4 — четвертичная
Первичная структура белка — последовательность аминокислот, соединенных пептидными связями[править]
Схематическое изображение образования пептидной связи (справа). Подобная реакция происходит в молекулярной машине по образованию белка — рибосоме
Молекулы белков представляют собой полимеры, состоящие из мономеров — α-L-аминокислот и, в некоторых случаях, из модифицированных аминокислот. По своей структуре белки — линейные нерегулярные гетерополимеры. Это означает, что полипептидные цепочки из аминокислот обычно не ветвятся и не образуют колец, в их состав входят разные мономеры, и они могут чередоваться в различной последовательности.
При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты образуются пептидные связи. Концы белка называют С- и N-концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -NH2, соответственно). При синтезе белка на рибосоме новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.
Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. На первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белков. На самом деле количество вариантов трудно переоценить: для цепочки всего из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Однако большинство вариантов не реализуются в природе, так как такие белки не смогли бы выполнять никаких функций.
Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, а более длинные — белками, хотя это деление весьма условно.
Вторичная структура белка — α-спирали и β-слои[править]
Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями и гидрофильно-гидрофобными взаимодействиями. Две наиболее распространенные вторичные структуры -
α-спирали иβ-листы (складчатые слои).
α-спирали — плотные витки вокруг длинной оси молекулы. Один виток составляют 3,6 аминокислотных остатка, спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L). Хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученные спирали.
Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина; близко расположенные остатки аспарагина, серина, треонина и лейцина могут стерически мешать образованию спирали, остаток пролина вызывает изгиб цепи и также нарушает α-спирали.
β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры R-групп аминокислот, преобладают обычно глицин и аланин.
Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Слева — «палочковая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы, α-спирали и β-листы. Справа изображена контактная поверхность белка, на основании Ван-дер-Ваальсовых радиусов атомов; цветами показаны особенности активности участков
Образование третичной структуры. Глобулярные и фибриллярные белки. Связи, участвующие в формировании третичной структуры[править]
Кроме последовательности аминокислот полипептида (первичной структуры), крайне важна трёхмерная структура белка, которая формируется в процессе фолдинга (от англ. folding), «сворачивание»). Трёхмерная структура формируется в результате взаимодействия структур более низких уровней.
Третичная структура — пространственное строение полипептидной цепи; взаимное расположение элементов вторичной структуры, стабилизированное различными типами взаимодействий. В стабилизации третичной структуры принимают участие:
ковалентные связи между двумя отсатками цистеина — дисульфидные мостики;
ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;
водородные связи;
гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.
Белки разделяют на две основные группы с разной трёхмерной структурой. Большинство белков — глобулярные: общая форма из молекулы более или менее сферическая. Меньшая часть белков фибриллярные: их молекулы (обычно и надмолекулярные комплексы) в работающем состоянии — вытянутые волокна. К фибриллярным белкам относятся, например, кератин и коллаген.
Среди глобулярных и фибриллярных белков выделяют подгруппы. Например, изображённый на картинке справа глобулярный белок триозофосфатизомераза состоит из восьми α-спиралей, расположенных на внешней поверхности структуры, и восьми параллельных β-слоёв внутри структуры. Белки с подобным трёхмерным строением называются αβ-баррелы (от англ. barrel — бочка).
Четвертичная структура[править]
Четверичная структура — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.
Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру (можно считать её и молекулой, если между разными полипептидными цепями, как это нередко бывает, образуются дисульфидные мостики). В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной.
Надмолекулярные белковые комплексы могут состоять из десятков молекул, многие из них сравнимы по размеру с рибосомами и в последние годы часто описываются как органоиды (см., напр., протеасома). Нередко в их состав входят молекулы РНК (см., напр., сплайсосома).
Постулат Полинга и принцип самосборки. Нарушения постулата Полинга[править]
Суть постулата Полинга заключается в том, что первичная структура белка (последовательность аминокислот) определяет вторичную, третичную и, наконец, четвертичную. Это означает, что все структуры белка, кроме первичной, детерминированы и полностью зависят от начальной последовательности аминокислот. Однако у этого принципа есть исключение - это белки прионы. Прион может существовать в двух конформациях — первая— PrPC, которую он имеет в нормальных клетках (в ней преобладают α-спирали) и «патологическая» — PrPSc (имеет β складчатую структуру). Белок PrPSc при попадании в здоровую клетку катализирует переход клеточного PrPC в патологическую конформацию, что в конечном итоге приводит к гибели клетки.
Белки как молекулярные машины[править]
Основные функции белков в клетке[править]
Запасающая (энергетическая) функция[править]
Белки редко используются как специальные запасные вещества. Вероятно, отчасти это связано с высокими энергозатратами, которые требуются для синтеза белка из аминокислот, а частично — с тем, что при «сжигании» белков в ходе катаболизма выделяются ядовитые «осколки» — аммиак, который в организме человека обезвреживается за счет превращения в менее токсичную мочевину.
Тем не менее, в яйцеклетках животных в состав желточных гранул входят белки в качестве запасных веществ (белок яйца — это белок, и желток — тоже белок!). Белки в значительных количествах запасаются в семенах семенных растений; особенно высокий процент их содержится в семенах бобовых. Питательную (энергетическую) функцию выполняют белки молока (казеин и др.).
Так как белки не полностью окисляются в ходе обмена веществ, при их использовании в организме выделяется всего около 4-4,1 ккал/г, а при полном окислении — сжигании в калориметре — около 5,6 ккал/г.
Структурная функция[править]
Структурная функция белков заключается в том, что белки
участвуют в образовании практически всех органоидов клеток, во многом определяя их структуру (форму);
образуют цитоскелет, придающий форму клеткам и многим органоидам и обеспечивающий механическую форму ряда тканей;
входят в состав межклеточного вещества, во многом определяющего структуру тканей и форму тела животных.
Белки межклеточного вещества
Волокна белка коллагена из соединительной ткани млекопитающих (электронная микрофотография)
В теле человека белков межклеточного вещества больше, чем всех остальных белков. Основными структурными белками межклеточного вещества являются фибриллярные белки.
Коллагены — семейство белков, входящих в состав межклеточного вещества. В теле человека составляют до 25 — 30 % общей массы всех белков. Кроме структурной функции коллаген выполняет также механическую, защитную, питательную и репаративную функции. Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей. Всего у человека имеется 28 типов коллагена. Все они сходны по структуре.
Эластин широко распространён в соединительной ткани, особенно в коже, легких и кровеносных сосудах. Общими характеристиками для эластина и коллагена являются большое содержание глицина и пролина. В эластине значительно больше валина и аланина и меньше глутаминовой кислоты и аргинина, чем в коллагене. В эластине содержатся десмозин и изодесмозин. Эти соединения можно обнаружить только в эластине. Эластин нерастворим в водных растворах (как и коллаген), в растворах солей, кислот и щелочей даже при нагревании. В эластине большое количество аминокислотных остатков с неполярными боковыми группами, что, по-видимому, обусловливает высокую эластичность его волокон.
Другие белки внеклеточного матрикса — ламинины, фибронектин и др. — выполняют как структурную, так и сигнальную функции. Взаимодействуя с мембранными рецепторами, они влияют на миграции клеток и другие стороны их поведения.
Белки цитоскелета Один из основных структурных белков — кератин. В основном из кератина состоят мертвые клетки ороговевающего эпителия и их производные (волосы млекопитющих, рога, копыта, когти, перья птиц, чешуя рептилий и др.). В живых клетках эпителиальных тканей кератины образуют промежуточные филаменты.
Кератины разделяются на две группы: α-кератины и β-кератины. Прочность кератина уступает, пожалуй, только хитину. Характерной особенностью кератинов является их полная нерастворимость в воде при pH 7,0. Содержат в молекуле остатки всех аминокислот. Отличаются от других фибриллярных структурных белков (например, коллагена) в первую очередь повышенным содержанием остатков цистеина. Первичная структура полипептидных цепей a-кератинов не имеет периодичности.
В других типах тканей (кроме эпителиев) промежуточные филаменты образованы похожими на кератин по структуре белками — виментином, белками нейрофиламентов и др. Белки ламины в большинстве клеток жукариот образуют внутреннюю выстилку оболочки ядра. Состоящая из них ядерная ламина поддерживает ядерную мембрану и контактирует с хроматином и ядерными РНК.
Тубулин относится к филаментозным белкам. Димеры тубулина после полимеризации превращаются в нити (протофиламенты). Из них собираются микротрубочки, образующие цитоскелет, который помогает клетке поддерживать форму, обеспечивает связь между органеллами и выполняет ряд других функций.
Актин — тоже филаментозный белок. Из его мономеров при полимеризации образуются тонкие филаменты мышц и микрофиламенты немышечных клеток.
Хотя миозин обычно относят к моторным белкам, в мышечных клетках он входит в состав постоянных структур. В скелетных и сердечной мышцах миозин входит в состав саркомеров, образуя толстые филаменты.
К структурным относятся и многие вспомогательные белки, входящие в состав цитоскелета. Так, в образовании саркомеров участвуют белки титин, тропомиозин и др.
Структурные белки органелл
Белки создают и определяют форму (структуру) многих клеточных органелл. В основном из белков состоят такие органеллы, как рибосомы, протеасомы, ядерные поры и др. Гистоны необходимы для сборки и упаковки нитей ДНК в хромосомы. Из белков состоят клеточные стенки некоторых протистов (например,хламидомонады); в составе оболочки клеток многих бактерий и архей присутствует белковый слой (S-слой), который крепится у грамположительных видов к клеточной стенке, а у грамотрицательных — к наружной мембране. Из белка флагеллина состоят прокариотические жгутики.
Транспортная функция[править]
Транспортная функция белков — участие белков в переносе веществ в клетки и из клеток, в их перемещениях внутри клеток, а также в их транспорте кровью и другими жидкостями по организму.
Есть разные виды транспорта, которые осуществляются при помощи белков.
Перенос веществ через клеточную мембрану
У всех клеток есть мембрана, состоящая из двойного слоя липидов. В клетку должны поступать многие необходимые для жизни вещества (сахара, аминокислоты, ионы щелочных металлов), но мембрана для них непроницаема. Поэтому в состав мембраны входят транспортные белки, которые и осуществляют перенос всех необходимых соединений. Транспорт этих соединений осуществляют две группы белков:
1) белки-переносчики связываются с молекулой или ионом переносимого вещества и каким-либо способом доставляют её внутрь клетки.
2) каналообразующие белки образуют в мембране водные поры, через которые (когда они открыты) могут проходить вещества.
Каналообразующие белки коннексины и паннексины формируют щелевые контакты, через которые низкомолекулярные вещества могут транспортироваться из одной клетки в другую (через паннексины вещества могут проходить и в клетки из внешней среды).
Перенос веществ внутри клетки
Между ядром, другими органоидами и цитоплазмой клетки постоянно идет обмен разными веществами. Например, перенос белков между ядром и цитоплазмой (ядерно-цитоплазматический транспорт)происходит благодаря ядерным порам, которые пронизывают двухслойную оболочку ядра. Они состоят примерно из тридцати белков — нуклеопоринов. Вещества переносятся из цитоплазмы в ядро клетки вместе с беклами — транспортинами. Эти белки узнают вещества, предназначенные для транспорта в ядро, и связываются с ними. Затем этот комплекс белков заякоривается на белках ядерной поры и попадает в её канал, а затем в ядро. Там она связывается ещё с одним белком и распадается, а транспортины направляются обратно в цитоплазму.Также для транспортировки веществ внутри клеток используются микротрубочки. По их поверхности могут передвигаться митохондрии и мембранные пузырьки. Этот транспорт осуществляют моторные белки. Они делятся на два типа: цитоплазматические динеины и кинезины. Эти две группы белков различаются тем, от какого конца микротрубочки они перемещают груз: динеины от + конца к — концу, а кинезины наоборот.
Перенос веществ по организму
Наиболее известный транспортный белок, транспортирующий вещества по организму — это гемоглобин. Он переносит кислород по кровеносной системе от лёгких к органам и тканям. Также 15 % углекислого газа транспортируется к лёгким с помощью гемоглобина. В скелетных и сердечной мышцах перенос кислорода выполняется белком миоглобином. Жирные кислоты транспортируются альбуминами сыворотки крови. Кроме того, белки группы альбуминов, например, транстиретин, транспортируют гормоны щитовидной железы. Также важнейшей транспортной функцией альбуминов является перенос билирубина, желчных кислот, стероидных гормонов, лекарств и неорганических ионов. Другие белки крови — глобулины переносят различные гормоны, липиды и витамины. Транспорт ионов меди в организме осуществляет глобулин — церулоплазмин, а транспорт ионов железа — белок трансферрин.
Защитная функция
Защитная функция белков — способность белков обеспечивать защиту организмов от неблагоприятного воздействия различных факторов. Эту функцию белки могут выполнять несколькими различными способами.
Механическая защита
Белки могут обеспечивать механическую защиту клетки или всего организма. Из белков состоит клеточная стенка некоторых протистов (например. одноклеточной водоросли хламидомонады), кутикула нематод и другие покровные образования. У наземных позвоночных ороговение покровного эпителия кожи обеспечивает белок кератин, синтезируемый в клетках эпидермиса. К роговых производных кожи относятся, роговые чешуи рептилий, перья и чехол клюва птиц, шерсть, копыта и рога млекопитающих и др. Состоящие из белков покровные образования могут обеспечивать не только механическую защиту, но и термоизоляцию, защиту от воздействия ультрафиолетового излучения и химических веществ, от потерь жидкости и проникновения в организм бактерий и других паразитов.
Свертывание крови
К механическим защитным функциям белков можно отнести способность крови свертываться, что обеспечивается благодаря белку фибриноген, содержащийся в плазме крови. Когда кровь начинает свертываться, фибриноген расщепляется ферментом тромбином; после расщепления образуется мономер — фибрин, который, в свою очередь, полимеризуется и образует длинные белые нити. Из нитей фибрина и эритроцитов образуется тромб, который при последующей сокращении фибрина затвердевает. Таким образом, фибрин играет главную роль в процессе свертывания крови и предотвращении кровопотери.
Химическая защита
Связывание токсинов белковыми молекулами и действие на токсины ферментов может обеспечивать их обезвреживание. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма. В защите клеток от вредных веществ могут принимать участие также транспортные белки, например, многие белки суперсемейства АВС-транспортеров. Эти белки, имеющиеся у всех живых организмов, транспортируют через клеточную мембрану различные вещества (липиды, многие ксенобиотики и др.). АВС-транспортеры обеспечивают защиту бактерий от действия многих антибиотиков, отвечают за явление множественной лекарственной устойчивости| раковых клеток.
Иммунная защита
Иммуная функция белков играет очень важную роль в организме животных. В тот момент, когда в организм попадают возбудители — вирусы или бактерии, в специализированных органах начинают вырабатываться специальные белки — антитела, которые связывают и обезвреживают возбудителей. Особенность иммунной системы заключается в том, что за счет антител она может бороться с почти любыми видами возбудителей. В иммунной системе играют важную роль не только белки-антитела, но и лизоцимы и белки системы комплемента. Лизоцимы — белки-ферменты, которые разрушают стенки бактерий путем гидролизу их компонентов. Белки комплемента запускают каскад реакций, в результате которых образуется белок МАК (мембраноатакующий комплекс). МАК атакует бактерию, разрушая ее клеточную мембрану. Если этого не произошло, другие белки системы комплемента помечают эту клетку для последующего её уничтожения фагоцитами. К защитным белкам иммунной системы относятся также интерфероны. Эти белки производят клетки, зараженные вирусами. Их воздействие на соседине клетки обеспечивает противовирусную устойчивость, блокируя в клетках-мишенях размножение вирусов или сборку вирусных частиц. Интерфероны обладают и иными механизмами действия, например, влияют на активность лимфоцитов и других клеток иммунной системы.
Защитная функция токсинов
Белки обеспечивают активную и пассивную ядовитость многих организмов, которая служит для защитыу от врагов или для нападения на добычу. Белки — основной компонент ядов большинства животных, а также некоторых грибов и бактерий. Попадая в организм жертвы, ядовитые белки (токсины) действуют на определенные молекулы или клетки-мишени. Мишенями для большинства токсинов служат клетки нервной системы. Белки и пептиды содержатся в ядах большинства животных (например, змей, скорпионов, стрекающих и др.). Содержащиеся в ядах белки имеют различные механизмы действия. Так, яды гадюковых змей часто содержат фермент фосфолипазу, который вызывает разрушение клеточных мембран и, как следствие, гемолиз эритроцитов и геморрагию. В яде аспидов преобладают нейротоксины; например, в яде крайтов содержатся белки α-бунгаротоксин (блокатор никотиновых рецепторов ацетилхолина и β-бунгаротоксин(вызывает постоянное выделение ацетилхолина из нервных окончаний и тем самым истощение его запасов); совместное действие этих ядов вызывает смерть от паралича мышц. Бактериальные белковые яды — ботулотоксин, токсин тетаноспазмин, вырабатываемый возбудителями столбняка, дифтерийный токсин возбудителя дифтерии, холерный токсин. Многие из них являются смесью нескольких белков с разных механизмом действия. Некоторые бактериальные токсины белковой природы являются очень сильными ядами; компоненты ботулотоксина — наиболее ядовитое из известных природных веществ. Токсины патогенных бактерий рода Clostridium, видимо, требуются анаэробным бактериям для воздействия на весь организм в целом, чтобы привести его к смерти — это дает бактериям «безнаказанно» питаться и размножаться, а уже сильно увеличив свою популяцию покидать организм в виде спор. Биологическое значение токсинов многих других бактерий точно не известно. У растений в качестве ядов обычно используются вещества небелковой природы (алкалоиды, гликозиды и др.). Однако у растений встречаются и белковые токсины. Так, в семенах растения семейства молочайные клещевине содержится белковых токсин рицин. Этот токсин проинкает в цитоплазму клеток кишечника, и его ферментативная субъединица, воздействуя на рибосомы, необратимо блокирует трансляцию.
Двигательная функция
Двигательные, или моторные белки способны использовать энергию гидролиза АТФ или энергию ионного градиента для совершения механической работы. К моторным белкам относятся, например, миозины, динеины и кинезины. Все эти белки относятся к АТФ-азам, так что они обладают и ферментативной функцией. Однако в изолированном виде они расщепляют лишь одну молекулу АТФ (на одну молекулу белка); образующаяся молекула АДФ остается связанной с белком и препятствует его работе. Расщеплять АТФ постоянно (циклически) они способны при взаимодействии с другими белками. Миозин расщепляет АТФ при взаимодействии с актином в составе микрофиламентов, а динеин и кинезин - при взаимодействии с тубулином в составе микротрубочек.
Рецепторная функция
Многие белки выполняют функцию рецепторов. Слово «рецептор» в биологии употребляется в двух значениях. Рецепторами называются клетки, специализирующиеся на восприятии раздражителей. Это могут быть чувствительные нейроны или другие (не нервные) клетки (например, мышечные веретена). Рецепторами также называются белки, молекулы которых служат для восприятия сигналов, получаемых клеткой, и запускают ответную реакцию клетки на тот или иной сигнал. Белок-рецептор — молекула (обычно белок или гликопротеид)? распложеннная на поверхности клетки, клеточных органелл или растворенная в цитоплазме, специфически реагирующая изменением своей формы на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передающая этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов. Вещество, специфически соединяющееся с рецептором, называется лигандом этого рецептора. Внутри организма это обычно гормон или нейромедиатор либо их искусственные заменители, применяемые в качестве лекарственных средств и ядов (агонисты). Некоторые лиганды, напротив, блокируют рецепторы (антагонисты). Когда речь идет об органах чувств, лигандами являются вещества, воздействующие на рецепторы обоняния или вкуса. Кроме того зрительные рецепторы реагируют на свет, а в органах слуха и осязания рецепторы чувствительны к механическому давлению, вызываемому колебаниями воздуха и иными воздействиями.
Мембранные рецепторы
Очень часто у белков есть гидрофобные участки, которые взаимодействуют с липидами, и гидрофильные участки, которые находятся на поверхности мембраны клетки, соприкасаясь с водным содержимым клетки. Большинство мембранных рецепторов — именно такие трансмембранные белки.
Многие из мембранных белков-рецепторов связаны с углеводными цепями, то есть представляют собой гликопротеиды. На их внеклеточных поверхностях находятся олигосахаридные цепи (гликозильные группы), похожие на антенны. Такие цепочки, состоящие из нескольких моносахаридных остатков, имеют самые различные формы, что объясняется разнообразием связей между моносахаридными остатками и существованием α- и β-изомеров.
Функция «антенн» — это распознавание внешних сигналов. Распознающие участки двух соседних клеток могут обеспечивать сцепление клеток, связываясь друг с другом. Благодаря этому клетки ориентируются и создают ткани в процессе дифференцировки. Распознающие участки присутствуют и в некоторых молекулах, которые находятся в растворе, благодаря чему они избирательно поглощаются клетками, имеющими комплементарные распознающие участки (так, например, поглощаются ЛПНП с помощью рецепторов ЛПНП).
Два основных класса мембранных рецепторов — это метаботропные рецепторы и ионотропные рецепторы.
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводитъ к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор.
Структура гетеротримерного G-белка, состоящего из трёх разных субъединиц — αt/αi (голубые), β (красная) и γ (зелёная)
Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки. Основные типы мембранных рецепторов:
Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
Рецепторы, обладающие тирозинкиназной активностью (например, рецептор инсулина или рецептор эпидермального фактора роста).
Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме. Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо, наоборот инактивирует фермент, продуцирующий вторичные посредники. Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, в активированном состоянии они образуют гомодимеры, субъединицы которых связаны дисульфидными мостиками.
Внутриклеточные рецепторы
Внутриклеточные рецепторы — как правило, факторы транскрипции (например, рецепторы w:глюкокортикоидов) или белки, взаимодействующие с факторами транскрипции. Большинство внутриклеточных рецепторов связываются с лигандами в цитоплазме, переходят в активное состояние, транспортируются вместе с лигандом в ядро клетки, там связываются с ДНК и либо индуцируют, либо подавляют экспрессию некоторого гена или группы генов. Особым механизмом действия обладает оксид азота (NO). Проникая через мембрану, этот гормон связывается с растворимой (цитозольной) гуанилатциклазой, которая одновременно является и рецептором оксида азота, и ферментом, который синтезирует вторичный посредник — цГМФ.
Сигнальная функция
Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между тканями, клетками или организмами. Сигнальную функцию выполняют белки-гормоны. Связывание гормона с рецептором является сигналом, запускающим в клетке физиологические процессы. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Например, инсулин снижает содержание сахара в крови, гормон роста регулирует рост скелета, лептин регулирует аппетит. Клетки могут взаимодействуют друг с другом на расстоянии с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся цитокины, факторы роста и др.
Цитокины — небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют жизнедеятельность клеток, их выживаемость, стимулируют или подавляют рост, дифференциацию, функциональную активность и апоптоз (явление программируемой клеточной смерти), обеспечивают согласованность и упорядоченность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухолей|, который передаёт сигналы воспаления между клетками организма
Регуляторная функция
Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приему и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают все новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.
Существует несколько разновидностей белков, выполняющих регуляторную функцию:
белки — рецепторы, воспринимающие сигнал (см. раздел "Рецепторная функция)
сигнальные белки — гормоны и другие вещества, осуществляющие межклеточную сигнализацию (многие, хотя и далеко не все, из них является белками или пептидами) (см. раздел «Сигнальная функция»)
регуляторные белки, которые регулируют многие процессы внутри клеток.
Белки регулируют процессы, происходщие внутри клеток, при помощи нескольких механизмов:
взаимодействия с молекулами ДНК (транскрипционные факторы)
при помощи фосфорилирования (протеинкиназы) или дефосфорилирования (протеинфосфатазы) других белков
при помощи взаимодействия с рибосомой или молекулами РНК (факторы регуляции трансляции)
воздействия на процесс удаления интронов (факторы регуляции сплайсинга)
Белки-регуляторы транскрипции
Транскрипционный фактор — это белок, который, попадая в ядро клетки, регулирует транскрипцию ДНК, то есть синтез мРНК по матрице ДНК. Некоторые транскрипционные факторы изменяют структуру хроматина, делая его более доступным для РНК-полимераз. Существуют различные вспомогательные транскрипционные факторы, которые создают нужную конформацию ДНК для последующего действия других транскрипционных факторов. Еще одна группа транскрипционных факторов — это те факторы, которые не связываются непосредственно с молекулами ДНК, а объединяются в более сложные комплексы с помощью белок-белковых взаимодействий.
Факторы регуляции трансляции
Трансляция — синтез полипептидных цепей белков по матрице мРНК, выполняемый рибосомами. Регуляция трансляции может осуществляться несколькими способами, в том числе и с помощью белков-репрессоров, которые связываются с мРНК. Известно много случаев, когда репрессором является белок, который кодируется этой мРНК. В этом случае происходит регуляция по типу обратной связи (примером этого может служить репрессия синтеза фермента треонил-тРНК-синтетазы).
Факторы регуляции сплайсинга
Внутри генов эукариот есть участки, не кодирующие аминокислот. Эти участки называются интронами. Они сначала переписываются на пре-мРНК при транскрипции, но затем вырезаются особым ферментом. Этот процесс удаления интронов, а затем последующее сшивание концов оставшихся участков называют сплайсингом (сшивание, сращивание). Существует альтернативный сплайсинг, при котором из одной пре-м-РНК могут образовываться несколько разных хрелых м-РНК. Сплайсинг осуществляется с помощью небольших РНК, обычно связанных с белками, которые называются факторами регуляции сплайсинга. В сплайсинге принимают участие белки, обладающие ферментативной активностью. Они придают пре-мРНК нужную конформацию. Для сборки комплекса(сплайсосомы) необходимо потребление энергии в виде расщепляемых молекул АТФ, поэтому в составе этого комплекса есть белки, обладающие АТФ-азной активностью. Особенности сплайсинга определяются белками, способными связываться с молекулой РНК в областях интронов или участках на границе экзон-интрон. Эти белки могут препятствовать удалению одних интронов и в то же время способствовать вырезанию других. Направленная регуляция сплайсинга может иметь значительные биологические последствия. Например, у плодовой мушки дрозофилы альтернативный сплайсинг лежит в основе механизма определения пола.
Протеинкиназы и протеинфосфатазы
Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп. Протеинкиназы регулируют активность других белков путем фосфорилирования — присоединения остатков фосфорной кислоты к остаткам аминокислот, имеющих гидроксильные группы. При фосфорилировании обычно изменяется функционирование данного белка, например, ферментативная активность, а также положение белка в клетке. Существуют также протеинфосфатазы — белки, которые отщепляют фосфатные группы. Протеинкиназы и протеинфосфатазы регулируют обмен веществ, а также передачу сигналов внутри клетки. Фосфорилирование и дефосфорилирования белков — один из главных механизмов регуляции большинства внутриклеточных процессов.
Каталитическая функция белков. Обмен веществ и энергии как совокупность ферментативных реакций.
Ферменты, или энзи́мы (от лат. fermentum, греч. ζύμη, ἔνζυμον — дрожжи, закваска) — обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества — продуктами. Белковые ферменты синтезируются на рибосомах, а РНК — в ядре. Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй — в англо- и франкоязычной). Наука о ферментах называется энзимологией. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу). Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (ообразуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептичную связь, следующую за многими аминокислотами. Активность ферментов определяется их трёхмерной структурой. Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Многие ферменты обладают сложной четвертичной структурой.
Механизм работы ферментов
Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов (коферментов, ионов металлов, АТФ и др.).
Фермент, соединяясь с субстратом:
очищает субстрат от водяной «шубы»
располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом
подготавливает к реакции (например, поляризует) молекулы субстратов.
Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко — за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента. Более реалистичная ситуация в случае индуцированного соответствия. Неправильные субстраты — слишком большие или слишком маленькие — не подходят к активному центру. В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:
В отсутствии фермента:
А+В = АВ
В присутствии фермента:
А+Ф = АФ
АФ+В = АВФ
АВФ = АВ+Ф
где А, В — субстраты, АВ — продукт реакции, Ф — фермент.
Гипотеза Кошланда об индуцированом соответствии
В 1890 г. Эмиль Фишер предположил, что специфичность ферментов определяется точным соответствием формы фермента и субстрата. Такое предположение называется моделью «ключ-замок». Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса. Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике.
Регуляция работы ферментов
Ферментативная активность может регулироваться активаторами и ингибиторами ферментов (активаторы — повышают, ингибиторы — понижают).
Роль ДНК в клетке и история её открытия
Фридрих Мишер
Нуклеиновые кислоты открыл Ф. Мишер в XIX веке. ДНК как представитель отдельного класса органических веществ — нуклеиновых кислот — была открыта швейцарским врачом и биологом Фридрихом Мишером в 1869 г. Мишер изучал химический состав гноя — погибших клеток-лейкоцитов. Ему удалось выделить из ядер лейкоцитов вещество, не расщепляемое протеазами, не растворяющееся в эфире и содержащее большое количество фосфора. Мишер назвал его «нуклеин» (от слова «нуклеус» — ядро) (когда это вещество было переименовано в «нуклеиновую кислоту», это вызвало большое недовольство Мишера). Позднее Мишеру удалось найти удобный материал для выделения ДНК — молоки лососевых рыб (для выделения больших количества ДНК их используют до сих пор, так как процентное содержание ДНК в сперматозоидах гораздо выше, чем в любых других клетках). А. Вейсман предположил, что существует «бессмертная» зародышевая плазма — особое вещество наследственности. В конце 19-ого века А. Вейсман высказал гипотезу, что существует особое «наследственное вещество», которое он назвал зародышевой плазмой. Она, как предполагал Вейсман, находится в хромосомах, а её элементы располагаются в линейном порядке. Две гипотезы, которые он выдвинул, подтвердились в ходе развития генетики:
1) Вейсман предположил, что зародышевая плазма содержится только в половых клетках и отсутствует в соматических (клетках тела). Как предполагал Вейсман, зародышевая плазма не зависит от того, что происходит с соматическими клетками (приобретенные признаки не наследуются). Для доказательства этой теории Вейсман проводил опыты на мышах. В двадцати поколениях мышам подрезали хвосты, но при этом у их детенышей хвосты короткими не становились. Этот несколько наивный опыт в то время рассматривался как важное доказательство того, что приобретенные признаки не наследуются: клетки тела не могут сообщить половым клеткам о происходящих с ними изменениях.
2) Идея Вейсмана о роли хромосом и о линейном расположении в них элементарных единиц наследственности оказалась верной и сохранилась в науке до наших дней, изменилась только терминология.
Генетические опыты на дрозофиле показали, что гены расположены в хромосомах в линейной последовательности. Открытие кроссинговера (обмена участками между гомологичными хромосомами) не только внесло поправку в представления о сцепленном наследовании. После этого открытия ученые смогли изучить расположение генов в хромосоме. Идея была предложена ученым Т. Х. Морганом и его сотрудником Стертевантом. Они предположили, что: 1) Хромосома представляет собой линейную структуру. 2) Гены в хромосоме расположены линейно, как бусины на нитке. 3) Точка пересечения хромосом при кроссинговере лежит в любом месте хромосом. Из этих предположений можно сделать вывод, что чем дальше гены расположены друг от друга, тем чаще будет наблюдаться кроссинговер, чем гены ближе друг к другу, тем кроссинговер будет наблюдаться реже. Если гены лежат на разных концах хромосомы, то при каждом перекрещивании гены разойдутся в разные хромосомы, но если гены расположены близко друг к другу, то кроссинговер будет происходить только если точка перекреста хромосом окажется на коротком участке, находящемся между ними между ними, то есть редко. Если изучать кроссинговер трех генов, то можно определить расстояние между ними по частоте кроссинговеров. Морган скрещивал самок дрозофил с рецессивными генами w (белые глаза), y (желтый цвет тела)и bi (вильчатые крылья). При этом частота кроссинговеров между генами y и w составила 1,2 %, между генами w и bi — 3,5 %, между генами y и bi — 4,7 %. Из этого можно сделать вывод, что ген w находится между генами y и bi, причем расстояние между данными генами пропорционально проценту кроссинговеров меду ними.
Н. К. Кольцов предсказал, что наследственная информация записана на молекулярном уровне, а наследственные молекулы размножаются в помощью матричного принципа
В 1927 году Н. К. Кольцов, выступая с докладом, прибавил к двум уже существующим биологическим принципам («Omne vivum ex ovo», «Omnis cellula ex cellula») третий — «Omnis molecula ex molecula» — «Всякая молекула от молекулы». Речь шла о «наследственных молекулах», которые, как считал Кольцов, несут наследственную информацию. По представлениям Кольцова, «наследственные молекулы» — это белковые макромолекулы огромной длины; информация в них шифруется последовательностью аминокислот. При удвоении хромосом информация копируется по матричному принципу: исходная молекула служит матрицей, по которой строится её копия. В том, что наследственная информация закодирована в белках, Кольцов ошибся (одной из причин этого было кажущееся исчезновение ДНК при позднем овогенезе и в гигантских хромосомах). Зато в том, что «наследственная молекула» удваивается по матричному принципу, он оказался прав. Э. Шрёдингер стимулировал интерес биологов к физической природе наследственности. Эрвин Шрёдингер — один из создателей квантовой механики — в 1944 г. написал книгу «Что такое жизнь? С точки зрения физика». В этой книге автор подробно описывает строение хромосом и их функцию. Он подробно разобрал явление мутаций и их причины. Также он разработал некоторые положения теории наследственности. Вот некоторые выдержки из его книги: «Именно эти хромосомы или, возможно, только осевая или скелетная нить того, что мы видим под микроскопом как хромосому, содержат в виде своего рода шифровального кода весь „план“ будущего развития индивидуума и его функционирования в зрелом состоянии. Каждый полный набор хромосом содержит весь шифр, поэтому, как правило, имеются две копии последнего в оплодотворенной яйцеклетке, которая представляет самую раннюю стадию будущего индивидуума…» «Называя структуру хромосомных нитей шифровальным кодом, мы подразумеваем, что всеохватывающий ум, вроде такого, который некогда представлял себе Лаплас и которому каждая причинная связь непосредственно открыта, мог бы, исходя из структуры хромосом, сказать, разовьется ли яйцо при благоприятных условиях в черного петуха или в крапчатую курицу, в муху или растение маиса, в рододендрон, жука, мышь или человека…» По этим цитатам видно, что Шредингер разбирал темы, которые раньше почти не затрагивались биологической теорией. Здесь Шредингер впервые использует для хромосом термин «наследственный шифровальный код». Шрёдингер был знаменитым физиком, и его книга вызвала неподдельный интерес у других представителей естественных наук, в том числе у биологов, хотя многие не сразу оценили ее значение. Гриффит открыл трансформацию: вещества убитых бактерий могут вызывать изменение наследственных свойств других штаммов, проникая в их клетки[править]
Схема опыта Гриффита.
Rough strain — шероховатый штамм (невирулентный),
smooth strain — гладкий штамм (вирулентный)
Фредерик Гриффит, 1936.
Немецкий бактериолог Фред Нойфельд впервые описал штаммы пневмококка Streptococcus pneumoniae. Среди колоний вирулентных (способных вызывать заболевание) пневмококков, имеющих гладкую поверхность (R-штамм) изредка в результате мутации появляются шероховатые колонии невирулентного S-штамма. Утрата болезнетворности связана с тем, что мутантные пневмококки не синтезируют полисахаридную капсулу. Сейчас известно, что полисахаридная капсула препятствует опсонизации и последующему фагоцитированию бактерий. До эпохи антибиотиков пневмония была грозной, часто смертельной болезнью. Нужно отметить, что и сегодня пневмония занимает одно из первых мест среди инфекционных болезней как причина смертности. В наши дни существует и в некоторых странах широко применяется вакцина от пневмонии. Английский врач и генетик Фредерик Гриффит начал опыты, приведшие к открытию трансформации, а надежде получить вакцину от пневмонии. Пневмококки — один из самых обычных возбудителей, которые вызывают эту болезнь. Результаты своих экспериментов Ф. Гриффит опубликовал в 1928 году. Гриффит брал два штамма пневмококков: капсульный и бескапсульный. Капсульный — патогенный (болезнетворный), при инфицировании таким штаммом мыши погибают через 1-2 дня, бескапсульный — непатогенный. При введении мышам смеси убитых нагреванием (и, следовательно, потерявших болезнетворность) капсульных пневмококков и живых бескапсульных (непатогенных) бактерий животные погибали в результате размножения в их организме капсульных болезнетворных форм. Следовательно, убитые пневмококки с капсулой каким-то образом передавали свой наследственный признак (способность синтезировать капсулу) бескапсульному штамму. Эта способность сохранялась и у последующих поколений при разведении. Обнаруженное явление Гриффит назвал трансформацией.
Описание опытов Гриффита:
1) После заражения пневмококками капсульного патогенного(штамма мыши погибают. Капсульные пневмококки размножаются в их крови и могут быть выделены в чистую культуру.
2) При инфицировании пневмококками бескапсульного непатогенного штамма животные не погибают. Бескапсульные пневмококки уничтожаются иммунной системой мыши и не обнаруживаются в её крови.
3) После заражения пневмококками капсульного патогенного штамма, предварительно убитыми нагреванием, мыши не погибают. Убитые пневмококки, естественно, не размножаются.
4) При введении мышам одновременно бескапсульных неболезнетворных пневмококков и капсульных, убитых нагреванием, животные погибают. Бескапсульные пневмококки становятся капсульными и размножаются в организме мыши. выделенные из её организма в чистую культуру, они и в последующих попоклениях сохраняют способность синтезировать капсулу. Бескапсульные неболезнетворные пневмококки приобрели наследуемый признак убитых капсульных бактерий — произошла трансформация. В 1941 г Ф. Гриффит погиб в своей лаборатории в пригороде Лондона во время бомбежки. До исследований Гриффита бактериологи полагали, что штаммы не изменяются от поколения к поколению. Данные, полученные Гриффитом, позднее были подтверждены Фредом Нойфельдом в Институте Коха и Мартином Генри Доусоном в Институте Рокфеллера. Мартин Генри совместно с Ричардом Сиа разработал метод трансформации клеток бактерий in vitro (эксперимент Гриффита был проделан в условиях in vivo). После отъезда Доусона в 1930 году Джеймс Эллоуэй в 1933 году предпринял попытки продолжить исследования Гриффитса и получить водный экстракт трансформирующего агента. Колин Маклеод работал над выделением этих водных растворов с 1934 по 1937 год, исследования по выделению фракций были продолжены в 1940 году и завершены Маклином Маккарти. В 1944 г. эта серия экспериментов была завершена Освальдом Эйвери, Колином МакЛеодом и Маклином МакКарти. Они смешивали бескапсульных пневмококков со взятыми от капсульных белками, полисахаридами или ДНК. При введении смеси из бескапсульных пневмококков и белков или полисахаридов животные оставались живы; значит, наследственная информация в них не содержится. А при введении смеси из бескапсульных пневмококков и ДНК мыши умирали; значит, именно в ДНК и записана информация, определяющая способность синтезировать капсулу.
Опыт Эйвери, МакЛеода и МакКарти доказал, что трансформирующее начало — ДНК
Эксперимент Освальда Эвери, Колина Маклеод и Маклина Маккарти, проиведенный в 1944 году, доказал что ДНК является веществом, вызывающим трансформацию клеток бактерий, то есть передает некоторый наследственный признак.
Эксперимент Эвери, Маклеода и Маккарти стал кульминацией исследований, проводившихся в Рокфеллеровском институте медицинских исследований в 1930-х — 1940-х годах и начатых экспериментом Гриффита в 1928 году. В эксперименте Гриффита убитые пневмококки штамма III-S (обладают олигосахаридной капсулой, вирулентные), введенные в кровь мыши с живыми пневмококками штамма II-R (безкапсульные, невирулентные), вызывали инфекцию типа III-S (мышь погибала). В статье, опубликованной в феврале 1944 года в Журнале экспериментальной медицины, Эвери с соавторами показали, что ДНК, но не белки являются веществом, отвечающим за передачу наследственных признаков у бактерий.
Освальд Эвери
В ходе эксперимента болезнетворные пневмококки, имеющие капсулу, были убиты нагреванием. Для выделения ДНК было произведено осаждение белков хлороформом. Полисахаридные капсулы, обуславливающие вредные свойства бактерий, были гидролизованы специфичным ферментом. Из оставшейся части экстракта были выделены прозрачные тяжи. Химический анализ показал, что соотношение в них атомов углерода, водорода, азота и фосфора соответствует соотношению этих же атомов в молекуле ДНК. Для подтверждения того, что действующим началом трансформации является именно ДНК, а не РНК, белки или другие компоненты клетки, Эвери с сотрудниками добавляли к выделенному веществу трипсин (расщепляет пептиды и белки) и рибонуклеазу (разрушает РНК), но это никак не влияло на трансформирующие свойства. Лишь обработка ДНКазой (разрушает ДНК) приводила к разрушению трансформирующего начала.
Опыт Херши и Чейз: при заражении бактерий бактериофаг вводит внутрь клетки ДНК, но не белки
Эксперимент Херши—Чейз окончательно доказал, что носитель генетической информации — это ДНК. Эксперимент состоял из серии опытов, которые были проведены в 1952 году американскими генетиками Алфредом Херши и Мартой Коулз Чейз. Хотя ДНК была известна ещё с 1869 года, ко времени эксперимента многие учёные считали, что наследственная информация находится в белках. Эксперимент проводился на бактериофаге T2, структура которого к тому времени была выяснена с помощью электронной микроскопии. Оказалось, что бактериофаг состоит из белковой оболочки, внутри которой находится ДНК. Эксперимент был спланирован таким образом, чтобы выяснить, что же — белок или ДНК — является носителем наследственной информации. Херши и Чейз выращивали две группы бактерий: одну в среде, содержащей радиоактивный фосфор-32 в составе фосфат-иона, другую — в среде с радиоактивной серой-35 в составе сульфат-иона. Бактериофаги, добавленные в среду с бактериями и размножавшиеся в них, поглощали эти радиоактивные изотопы, которые служили маркёрами, при построении своей ДНК и белков. Фосфор содержится в ДНК, но отсутствует в белках, а сера, наоборот, содержится в белках (точнее в двух аминокислотах: цистеин и метионин), но её нет в ДНК. Таким образом, одни бактериофаги содержали меченые серой белки, а другие — меченую фосфором ДНК. После выделения радиоактивно-меченых бактериофагов их добавляли к культуре свежих (не содержащих изотопов) бактерий и позволяли бактериофагам инфицировать эти бактерии. После этого среду с бактериями подвергали энергичному встряхиванию в специальном смесителе (было показано, что при этом оболочки фага отделяются от поверхности бактериальных клеток), а затем инфицированных бактерий отделяли от среды. Когда в первом опыте к бактериям добавлялись меченые фосфором-32 бактериофаги, оказалось, что радиоактивная метка находилась в бактериальных клетках. Когда же во втором опыте к бактериям добавлялись бактериофаги, меченые серой-35, то метка была обнаружена во фракции среды с белковыми оболочками, но её не было в бактериальных клетках. Это подтвердило, что материалом, которым инфицировались бактерии, является ДНК. Поскольку внутри инфицированных бактерий формируются полные вирусные частицы, содержащие белки вируса, данный опыт был признан одним из решающих доказательств того факта, что генетическая информация (информация о структуре белков) содержится в ДНК. В 1969 году Алфред Херши получил Нобелевскую премию за открытия генетической структуры вирусов.
Мономеры ДНК — дезоксирибонуклеотиды
Дезоксирибонуклеотиды — мономеры ДНК. Каждый дезоксирибонуклеотид состоит из азотистого основания, остатка фосфорной кислоты и пятиуглеродного сахара (дезоксирибозы).
Дезоксиаденозинмонофосфат.
Они отличаются от рибонуклеотидов строением пятиуглеродного сахара (дезоксирибоза или рибоза). Между собой дезоксирибонуклеотиды отличаются только азотистыми основаниями (аденин, гуанин, цитозин, тимин), которые присоединяются к 1' атому дезоксирибозы ковалентной связью. Дезоксирибонуклеотиды одной цепи соединены между собой ковалентной связью, возникающей между фосфатной группой одного и 3' атомом углерода другого дезоксирибонуклеотида. Между азотистыми основаниями дезоксирибонуклеотидов двух разных цепочек образуется три или две водородные связи (гуанин связывается с цитозином тремя связями, а аденин с тимином двумя).
Азотистые основания нуклеотидов ДНК — аденин, гуанин, тимин и цитозин
К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C) и тимин (T), который входит в состав только ДНК, а урацил (U) заменяет его в РНК. Они обладают схожими структурами и химическими свойствами. Это гетероциклические органические соединения, производные пиримидина и пурина, входящие в состав нуклеотидов. Аденин и гуанин — производные пурина, а цитозин, урацил и тимин — производные пиримидина.
Когда азотистые основания присоединяются ковалентной связью к 1' атомам рибозы (в РНК) или дезоксирибозы (в ДНК), а к 5'-гидроксильной группе сахара присоединяется одна или несколько фосфатных групп, образуются нуклеотиды.
стандартные нуклеотиды ДНК составляют триплеты — участки ДНК, кодирующие одну аминокислоту. Например, с триплета АУГ (ему соответствует аминокислота метионин) обычно начинается синтез белка на рибосомах. Нуклеозиды, приведённые в таблице, входят в состав моно-, ди- и трифосфатов. Например, аденозин входит в состав АТФ — важнейшего энергетического ресурса организма.
Пурин C5N4H4 — гетероциклические соединения, имидазольные производные пиримидинов. Производные пурина играют важную роль в химии природных соединений (пуриновые основания ДНК и РНК; кофермент NAD; алкалоиды, кофеин и т. д.) и, благодаря этому, в фармацевтике — ядро пурина входит в состав некоторых антибиотиков. Пурин и ряд его производных обладают противоопухолевой, противовирусной и противоаллергической активностью. Аденин — азотистое основание, аминопроизводное пурина. Образует две водородных связи с урацилом (в РНК) и тимином (в ДНК) по правилу комплементарности. Представляет собой бесцветные кристаллы. Химическая формула С5H5N5. Аденин проявляет основные свойства. Аденин входит в состав многих жизненно важных для живых организмов соединений, таких как аденозин, аденозинфосфорные кислоты, нуклеиновые кислоты, адениновые нуклеотиды и др. В виде этих соединений аденин широко распространен в живой природе. Гуанин — азотистое основание, аминопроизводное пурина, является составной частью нуклеиновых кислот. Химическая формула — C5H5N5O. В ДНК и РНК образует три водородные связи с цитозином по правилу комплементарности. Производные гуанилового нуклеотида — ГДФ, ГТФ и цАМФ — участвуют во многих сигнальных путях клетки. Для некоторых процессов, происходящих в клетке — например, для сборки микротрубочек — ГТФ используется как источник энергии. Пиримидин C4N2H4 — гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель диазинов. Пиримидин представляет собой бесцветные кристаллы с характерным запахом. Пиримидин проявляет свойства слабого двукислотного основания, так как атомы азота могут присоединять протоны. Производные пиримидина широко распространены в живой природе, где участвуют во многих важных биологических процессах. Его производные цитозин, тимин, урацил входят в состав нуклеотидов. Биологическая роль пиримидинов не ограничена нуклеиновыми кислотами. Некоторые пиримидиновые нуклеотиды играют важную роль в процессах обмена углеводов и липидов. Витамин В1 (тиамин) — пиримидиновое производное. Пиримидиновое ядро входит в состав некоторых коферментов и антибиотиков. Тимин — производное пиримидина. Формула C5H6N2O2. Присутствует во всех живых организмах, где вместе с дезоксирибозой входит в состав нуклеозида тимидина, который может фосфорилироваться 1-3 остатками фосфорной кислоты с образованием нуклеотидов тимидин моно-, ди- или трифосфорной кислоты (ТМФ, ТДФ и ТТФ). Дезоксирибонуклеотиды тимина входят в состав ДНК, в РНК на его месте располагается рибонуклеотид урацила. Тимин комплементарен аденину, образует с ним 2 водородные связи. Цитозин — азотистое основание, производное пиримидина. С рибозой образует нуклеозид цитидин, входит в состав нуклеотидов ДНК и РНК. Во время репликации и транскрипции по правилу комплементарности образует три водородных связи с гуанином. Представляет собой бесцветные кристаллы. Химическая формула C4H5N3O. Его производные цитозин, тимин, урацил входят в состав нуклеотидов, проявляет основные свойства. Урацил — пиримидиновое основание, которое является компонентом рибонуклеиновых кислот (РНК) и, как правило, отсутствует в дезоксирибонуклеиновых кислотах (ДНК). В составе РНК может комплементарно связываться с аденином, образуя две водородные связи. Эрвин Чаргафф открыл правила, описывающие количественные соотношения нуклеотидов. Правило Чаргаффа — биологический закон, в соответствии с которым установлены количественные соотношения между азотистыми основаниями разных типов. Для того, чтобы определить точные количественные соотношения нуклеотидов, Чаргафф разделил нуклеотиды ДНК методом бумажной хроматографии. Ему удалось выявить три закономерности:
Число аденинов равно числу тиминов, а число гуанинов — числу цитозинов: А=Т, Г=Ц
Число пуринов равно числу пиримидинов: А+Г=Т+Ц
Число аденина и цитозина равно числу гуанина и тимина: А+Ц=Г+Т
Состав ДНК разных организмов различается суммарным числом комплементарных оснований. Соотношение комплементарных нуклеотидов тоже может быть различным в разных молекулах ДНК. У одних оорганизмов в ДНК преобладают пары аденин-тимин, а у других — гуанин-цитозин. При этом правила Чаргаффа будут выполняться в любом случае.
Вопрос
Если в ДНК содержится 21 % аденина, то какова долю (%) остальных нуклеотидов, содержащихся в ДНК?
Данные рентгеноструктурного анализа показали, что молекулы ДНК имеют спиральную структуру. В 50-х годах 20 века многие химики и биологи пытались исследовать структуру ДНК. В Королевском колледже в Лондоне Морис Уилкинс и Розалинда Франклин пытались решить эту проблему методом рентгеноструктурного анализа солей ДНК. Но такой способ позволял выявить только общую структуру молекулы. Тем временем Джеймс Уотсон и Френсис Крик в Кавендишской лаборатории Кембриджского университета, используя данные, полученные М. Уилкинсом, стали строить пространственные 3-D модели ДНК. Они пытались создать структуру, которая согласовывалась бы со всеми данными рентгеноструктурного анализа. В итоге Уотсон и Крик пришли к выводу, что ДНК имеет спиральную структуру с периодичностью 0,34 нм вдоль оси. В 1953 году Дж. Уотсон и Ф. Крик открыли строение ДНК, предложив модель двойной спирали. Нуклеиновые кислоты, подобно белкам, обладают первичной структурой (под которой подразумевается их нуклеотидная последовательность) и трехмерной структурой. Интерес к структуре ДНК усилился, когда в начале XX века возникло предположение, что ДНК, возможно, представляет собой генетический материал. В начале 50-х годов американский химик, лауреат Нобелевской премии Лайнус Полинг, уже изучивший к тому времени α-спиральную структуру, характерную для многих фибриллярных белков, обратился к исследованию структуры ДНК, которая по имеющимся в то время сведениям также представлялась фибриллярной молекулой. Одновременно в Королевском колледже Морис Уилкинс и Розалинда Франклин пытались решить ту же проблему методом рентгеноструктурного анализа. Их исследования требовали долгой и трудоёмкой работы по приготовлению чистых препаратов солей ДНК, для которых удавалось получать сложные дифракционные картины. С помощью этих картин можно было, однако, выявить лишь общую структуру молекулы ДНК, не столь детализированную, как та, которую позволяли получить чистые кристаллы белка. Тем временем Фрэнсис Крик и Джеймс Уотсон в Кавендишской лаборатории Кембриджского университета избрали иной подход, который в конечном счёте и обеспечил успешное решение проблемы. Используя все физические и химические данные, какие оказались в их распоряжении, Уотсон и Крик стали строить пространственные модели ДНК в надежде на то, что рано или поздно им удастся получить достаточно убедительную структуру, согласующуюся со всеми этими данными. Истории их поисков увлекательно описаны Уотсоном в его книге «Двойная спираль». Два обстоятельства оказались для Уотсона и Крика решающими. Во-первых, они имели возможность регулярно знакомиться с результатами работ Уилкинса и, сопоставляя с его рентгенограммами свои модели, могли таким образом проверять эти модели. А рентгенограммы Уилкинса свидетельствовали в пользу спиральной структуры с периодичностью 0,34 нм вдоль оси. Во-вторых, Уотсон и Крик отдавали себе отчёт в важном значении закономерностей, касающихся соотношения различных оснований в ДНК. Обнаружил эти закономерности и сообщил о них в 1951 году Эрвин Чаргафф. Это открытие, однако, при всей своей важности не привлекло к себе должного внимания. Уотсон и Крик задались целью проверить предположение, что молекула ДНК состоит из двух спиральных полинуклеотидных цепей, удерживаемых вместе благодаря спариванию оснований, принадлежащих соседним цепям. Основания удерживаются вместе водородными связями. Аденин спаривается с тимином, гуанин — с цитозином; АТ-пара соединяется двумя водородными связями, а ГЦ-пара — тремя. Уотсон попытался представить себе такой порядок спаривания оснований и позже вспоминал об этом так: «От радости я почувствовал себя на седьмом небе, ибо тут я уловил возможный ответ на мучившую нас загадку: почему число остатков пуринов в точности равно числу остатков пиримидинов?» Уотсон увидел, что при таком сочетании основания оказываются очень точно подогнанными друг к другу, а общий размер и форма этих двух пар оснований одинаковы, так как обе пары содержат по три кольца. Водородные связи при других сочетаниях оснований в принципе возможны, но они гораздо слабее. После того как все эти обстоятельства выяснились, можно было наконец приступить к созданию достоверной модели ДНК. Уотсон и Крик показали, что ДНК состоит из двух антипараллельных (направленных в противоположные стороны) полинуклеотидных цепей. Каждая цепь закручена в спираль вправо, и обе они свиты вместе, то есть закручены вправо вокруг одной и той же оси, образуя двойную спираль. Каждая цепь состоит из сахарофосфатного остова, вдоль которого перпендикулярно длинной оси спирали располагаются азотистые основания. Находящиеся друг против друга основания двух противоположных цепей двойной спирали связаны между собой водородными связями. Расстояние между сахарофосфатными остовами двух цепей постоянно и равно расстоянию, занимаемому парой оснований, то есть одним пурином и одним пиримидином. Два пурина занимали бы слишком много места, а два пиримидина — слишком мало для того, чтобы заполнить промежутки между двумя цепями. Вдоль оси молекулы соседние пары оснований располагаются на расстоянии 0,34 нм одна от другой, чем и объясняется обнаруженная на рентгенограммах периодичность. Полный оборот спирали приходится на 3,4 нм, то есть на 10 пар оснований. Никаких ограничений относительно последовательности нуклеотидов в одной цепи не существует, но в силу правила спариваний оснований эта последовательность в одной цепи определяет собой последовательность нуклеотидов в другой цепи. Поэтому мы говорим, что две цепи двойной спирали комплементарны друг другу. Уотсон и Крик опубликовали сообщение о своей модели ДНК в журнале «Nature» в 1953 г., а в 1962 г. они вместе с Морисом Уилкинсом были удостоены за эту работу Нобелевской премии. Розалинду Франклин, умершую от рака ранее присуждения этой премии, не включили в число лауреатов, поскольку Нобелевская премия посмертно не присуждается. Для того чтобы признать, что имеющая предложенную структуру молекула может выполнять роль генетического материала, требовалось показать, что она способна: 1) нести в себе закодированную информацию и
2) точно воспроизводиться (реплицироваться). Уотсон и Крик отдавали себе отчет в том, что их модель удовлетворяет этим требованиям. В конце своей первой статьи они отметили: «От нашего внимания не ускользнуло, что постулированное нами специфическое спаривание оснований сразу же позволяет постулировать и возможный механизм копирования для генетического материала». Во второй статье, опубликованной в том же 1953 году, они обсудили выводы, которые следовали из их модели для возможного механизма передачи наследственной информации. Это открытие показало, сколь явно структура может быть связана с функцией уже на молекулярном уровне. Оно дало начало стремительному развитию молекулярной биологии.
Удвоение ДНК — матричный синтез
Матричный биосинтез — запрограммированный с помощью нуклеиновых кислот (НК) процесс сборки новых цепей полимеров (нуклеиновые кислоты, используемые как программы в матричном биосинтезе, называют матрицами). Реакции матричного биосинтеза:
реакция синтеза РНК на ДНК
удвоение ДНК
синтез белка на матрице иРНК
Значение реакции матричного синтеза:
способность к воспроизведению себе подобных
Репликация ДНК — это процесс синтеза дочерней молекулы ДНК. Он происходит в процессе деления клетки на матрице родительской молекулы ДНК. Генетический материал, заключенный в ДНК, удваивается и делится между дочерними клетками. Репликацию ДНК осуществляет специальный фермент — ДНК-полимераза. Цепи ДНК расходятся, и каждая из них становится матрицей. Каждая синтезированная молекула ДНК состоит из одной цепи родительской молекулы и одной вновь синтезированной цепи. Такой механизм удвоения называется полуконсервативным.
Удвоение ДНК — полуконсервативная репликация
Уотсон и Крик предположили, что удвоение ДНК происходит по полуконсервативному механизму. Это означает, что каждой новой двойной спирали одна цепь нуклеотидов достаётся от старой, а вторая цепь достраивается заново. В 1958 г этот механизм был подтвержден в опыте Месельсона и Сталя.
Распределение ДНК в последовательных поколениях после переноса на среду с легким изотопом азота
Каждая молекула ДНК содержит множество атомов азота. Наиболее распространён изотоп азота 14N. Существует также изотоп 15N, он не радиоактивен, а лишь тяжелее 14N. Содержащие тяжелый изотоп молекулы ДНК функциональны и могут удваиваться. Были выращены несколько поколений E. coli в среде, где в качестве источника азота присутствовали соли аммония, содержащие тяжелый изотоп 15N. Затем их ДНК была выделена и центрифугирована в градиенте плотность CsCl. Каждая молекула ДНК останавливалась на том уровне в пробирке, где её плотность совпадает с плотностью раствора соли. При длительном центрифугировании с ускорением около 10.000 g ионы цезия и хлора распределяются в пробирке неравномерно — у дна их концентрация повышается. ДНК бактерий, выращенных в 15N среде, была более тяжёлой. Эти бактерии затем были помещены обратно в 14N среду, где им было позволено разделится только один раз. Затем из клеток были извлечена ДНК, её плавучая плотность оказалась больше плавучей плотности ДНК бактерий, выращенных в среде, богатой 14N, но меньше плавучей плотности ДНК бактерий, выращенных в 15N среде. Это противоречило гипотезе о консервативном характере репликации ДНК, когда одна дочерняя клетка получает материнскую ДНК, а вторая — вновь синтезированную, обе цепи которой — новые, так как в этом случае ДНК разделилась бы на две фракции — лёгкую, содержащую атомы 14N, и тяжёлую, содержащую 15N. Однако этот результат не исключал дисперсный механизм репликации, когда куски материнской ДНК распределяются между дочерними ДНК случайным образом. Поэтому было выращено второе поколение бактерий, и их ДНК также была отцентрифугирована в градиенте хлористого цезия. Выяснилось, что клетки содержат в равном количестве как полностью «лёгкие» ДНК, так и «гибридные». Этот факт позволил исключить гипотезу дисперсного механизма репликации.
Задание 1
Для проведения этого эксперимента потребовалось получить синхронизированную культуру бактерий — такую культуру, в которой все клетки делятся одновременно. Как вы думаете, зачем?
Задание 2
Придумайте способы, с помощью которых можно получить такую культуру. Затем найдите в литературе данные о том, как в действительности получают синхронизированные культуры.
Задание 3
Предскажите результаты, которые получили бы Месельсон и Сталь в случае
а) консервативного и
б) дисперсного механизмов удвоения ДНК, Нарисуйте, как выглядело бы распределение ДНК в градиенте хлористого цезия через одно, два и три деления после переноса в среду с легким изотопом азота в случаях а) и б).
Источником энергии для удвоения ДНК служат макроэргические связи трифосфатнуклеотидов
Структура АТФ
Молекулы трифосфатнуклеотидов (АТФ, ГТФ, ЦТФ, ТТФ) состоят из азотистого основания, сахара дезоксирибозы и трёх остатков ортофосфорной кислоты. Трифосфатнуклеотиды относятся к макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых высвобождается значительное количество энергии. В данном случае запасающие энергию связи — связи между остатками фосфорной кислоты. Гидролиз такой связи, сопровождаемый отщеплением двух остатков, приводит к выделению от 40 до 60 кДж/моль (в зависимости от условий). При синтезе новой цепочки ДНК из трифосфатнуклеотидов от каждого из них отщепляется два остатка фосфорной кислоты. Выделяющейся при этом энергии хватает на образование ковалентной связи между неотщепившимся остатком фосфорной кислоты и третьим атомом углерода в дезоксирибозе следующего нуклеотида.
Фермент, катализирующий синтез ДНК — ДНК-зависимая ДНК-полимераза
ДНК-зависимые ДНК-полимеразы — это ферменты, осуществляющий репликацию ДНК (удвоение молекул ДНК). ДНК-полимеразы считывают информацию с цепи ДНК и достраивают вторую цепочку нуклеотидов, комплементарных данной, присоединяя к строящейся цепи нуклеотид, комплементарный нуклеотиду матричной цепи. Продукты этой реакции — удлиненная цепь ДНК и пирофосфат. Работа ДНК-полимеразы имеет свои особенности:
ДНК-полимераза может двигаться только в одну сторону — от 5' к 3'-концу, вследствие чего образуются лидирующая и отстающая цепи. ДНК-полимеразе требуется затравка в виде короткого фрагмента РНК (она не может начать синтез цепи нуклеотидов «с нуля», а способна только добавлять нуклеотиды к цепи). Затравку создает фермент праймаза. ДНК-полимераза может двигаться только по цепи раскрученной спирали ДНК. Цепи ДНК раскручивает белок геликаза. В клетке может присутствовать до 4-5 разных типов ДНК-полимераз. У разных групп эукариот и прокариот встречаются альфа-, бета-, дельта-, гамма-, эпсилон-, дзета-, эта- ДНК-полимеразы. Различные ДНК-полимеразы могут выполнять разные функции. У эукариот непосредственно в репликации ДНК участвуют альфа-, дельта- и эпсилон- ДНК-полимеразы. Каждый тип репликационных ДНК-полимераз имеет свою вероятность ошибки при репликации. У эукариот вероятность вставки некомплементарного азотистого основания ДНК-полимеразой альфа равна 1/106, а ДНК-полимеразой эпсилон равна 1/107. Пострепликационные системы репарации снижают вероятность ошибок репликации ещё на порядок. Одна из самых важных вторичных функций ДНК-полимераз — эксцизионная репарация ДНК (замена некомплементарного основания на комплементарное). Присоединив очередной нуклеотид, ДНК-полимераза как бы «оборачивается назад» и проверяет, образовал ли он правильные водородные связи с нуклеотидом матричной цепи. Если нет — нуклеотид удаляется. За счет этого вероятность вставки некомплементарного нуклеотида снижается до 1/107−1/108. Например, бета ДНК-полимераза может удалять основание с помощью специфической N-гликозилазы, а ресинтез азотистого основания может производить только в мононуклеотидных брешах [58]; ДНК-полимеразы дельта и эпсилон, вероятно, не могут производить удаление основания, но зато могут производить ресинтез на более протяженных участках. Однако не все типы ДНК-полимераз способны к репарации. ДНК-полимеразы интенсивно исследуются учеными; возможно, будут открыты их новые функции.В удвоении ДНК участвуют и другие ферменты
Схематическое изображение процесса репликации, цифрами отмечены:
(1) запаздывающая нить,
(2) лидирующая нить,
(3) ДНК полимераза (Polα),
(4) ДНК лигаза,
(5) РНК праймер,
(6) ДНК праймаза,
(7) фрагмент Оказаки,
(8) ДНК полимераза (Polδ),
(9) хеликаза,
(10) одиночная нить со связанными белками,
(11) топоизомераза
Реплика́ция ДНК — это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК. Репликацию ДНК осуществляет фермент ДНК-полимераза (репликация у эукариот осуществляется несколькими разными ДНК-полимеразами).
ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона.
Кроме ДНК-полимераз в процессе редупликации участвуют другие ферменты:
1) Хеликазы перемещаются по сахаро-фосфатному остову нуклеиновых кислот и разрывают водородные связи между комплементарно соединенными основаниями (rep-белок).
2) ДНК-праймаза синтезирует короткий фрагмент РНК, называемый праймером, комплементарный одноцепочечной матрице ДНК.
3) ДНК-лигаза сшивает фрагменты ДНК «отстающей» цепи, образующиеся при репликации.
4) Топоизомераза оборачивается вокруг ДНК и вносит разрыв, который позволяет спирали ДНК вращаться и снимает напряжение. После релаксации, топоизомераза соединяет разорванные концы.
5) ДНК-связывающие белки, которые расплетают ДНК, удерживают матрицу в разведённом состоянии, тем самым не давая восстановиться водородным связям, и вращают молекулу ДНК. Геликазы расплетают двойную спираль.
Структура геликазы RuvA бактерии Escherichia coli
Геликазы (от англ. helix — спираль) — ферменты, раскручивающие двойную спираль ДНК с затратой энергии АТФ и ГТФ. ДНК-геликазы — лишь одна из групп геликаз, есть еще РНК-геликазы. ДНК-геликазы участвуют в репликации, транскрипции,репарации и рекомбинации. Геликазы могут быть активны в качестве мономера или димера, хотя, например, геликазы DnaB активны в качестве гексамера (комплекса из шести субъединиц), образующего баранкообразную структуру. Для расплетания спирали нужен один геликазный белок, но для достижения большей скорости раскручивания несколько геликаз могут действовать совместно.
ДНК-геликазы рвут водордные связи между комплементарными нуклеотидами двух цепей, двигаясь при этом в противоположных направлениях (5'->3' или 3'->5'). При этом образуются две одноцепочечные молекулы, которые потом будут служить матрицей для достраивания второй цепи. Образуется структура Y-образной формы, названная репликационной вилкой. Но при таком быстром расплетании нитей, без вращения относительно друг друга, будут образовываться «узелки» — сверхскрученные участки, как на витой веревке, если её пытаться расплести не с конца, а с середины, растягивая. Суперскрученность устраняет специальный фермент ДНК-топоизомераза.
Схема репликационной вилки.
a: мРНК,
b: лидирующая цепь,
c: отстающая цепь,
d: репликационная вилка,
e: РНК праймер,
f: фрагменты Оказаки
В клетке присутствует много разновидностей геликаз; так, у человека их 24. При нарушении их работы могут возникать болезни: пигментная ксеродерма, синдром Коккейна, синдром Блума, синдром Вернера. По характеру и последствиям мутации можно объединить синдром Блума и синдром Вернера в одну группу, а синдром Коккейна и пигментную ксеродерму — в другую. При синдроме Вернера происходят мутации в гене WRN, кодирующем ДНК-геликазу. Эта мутация вызывает нарушение процесса репарации и репликации, нестабильность генома, 10-кратное увеличение темпа мутаций и уменьшение потенциала делений клеток в культуре. При синдроме Блума мутация происходит в гене BLM, принадлежащем к генам ДНК-геликаз. Синдром Блума также характеризуется нестабильностью генома и повышенным риском канцерогенеза. При синдроме Коккейна, сходном с пигментной ксеродермой, основная причина заболевания — дефект одного из механизмов эксцизионной репарации нуклеотидов. При разных вариантах синдрома Коккейна причиной заболевания бывает нарушение функций нескольких генов (CSA,CSB,XPD,XPB,XPG), причём мутации в 3 последних генах бывают и при пигментной ксеродерме. Это заболевание вызвано тем, что после повреждений клеток кожи ультрафиолетовым облучением ДНК фибробластов не восстанавливается. И при пигментной ксеродерме основная причина заболевания — дефекты раннего этапа эксцизионной репарации нуклеотидов. Мутации происходят в разных генах, кодирующих геликазы — от XPA до XPG. Однако основные причины пигментной ксеродермы — два вида нарушений генотипа: недостаток фермента УФ-эндонуклеазы, опознающего участки, поврежденные УФ-излучением, или дефект ДНК-полимеразы, участвующей в соединении разрывов ДНК (разрывы обычно появляются из-за повреждений кожи, вызванных УФ-облучением (как и при синдроме Коккейна)). Так что при синдроме Коккейна и пигментной ксеродерме мутации, связанные с ДНК-геликазами, не являются основными. Топоизомеразы разрезают и сшивают нить ДНК, позволяя спирали раскручиваться. Топоизомеразы (topoisomerases) — класс ферментов-изомераз, которые влияют на топологию ДНК.[6] Впервые топоизомеразы были описаны профессором Гарвардского университета Джеймсом Вангом. Молекулярная масса топоизомераз колеблется в пределах от 60 тыс. до 140 тыс дальтон. После трансляции фермент подвержен модификациям, в частности, фосфорилированию. Минимальный размер олигонуклеотидов, расщепляемых топоизомеразами ≈ 7-8 нуклеотидных остатков. В обычном состоянии ДНК пребывает в форме двойной спирали, и такая структура не позволяет отдельным цепочкам расходиться. Для расплавления двойной спирали (разрыва водородных связей между основаниями) используются специальные ферменты — хеликазы, которые позволяют осуществлять транскрипцию или репликацию другим белкам.Классификация ферментов основана на механизме их действия на молекулу ДНК: к топоизомеразам I группы относятся ферменты, катализирующие изменения топологическое состояния молекулы с помощью однонитевого разрыва-зашивания двухнитевой молекулы ДНК, к топоизомеразам II группы — с помощью двухнитевого разрыва-зашивания. В некоторых случаях реакция АТФ-зависимая. Установлено, что топоизомеразы I группы образуют в ходе реакции ковалентный промежуточный комплекс ДНК-белок. Фермент эукариот соединяется через тирозиновый остаток с 3'-концом разорванной цепи ДНК, у прокариот — с 5'-концом. После перемещении разорванных концов ДНК относительно друг друга обе формы топоизомераз восстанавливают ее целостность. Встраивание вирусной ДНК в хромосомы хозяина и другие формы рекомбинации также требуют присутствие топоизомераз Активность топоизомеразы во многих случаях угнетается противоопухолевыми и противомикробными препаратами (например, налидиксовой и оксолиниевой кислотами).
Генетический код
В последовательности нуклеотидов ДНК закодирована последовательность аминокислот в белках
Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.
кишечная палочка ~3,8 мпн (~ 1,3 мм)
дрожжи ~13,5 мпн
дрозофила ~105 мпн
человек ~3000 мпн (~ 1 метр), длина всех 23 молекул ДНК гаплоидного набора хромосом)
В ДНК зашифрована информация о первичной структуре белков посредством комбинации нуклеотидов. Процесс «переписывания» этого кода с ДНК в молекулы РНК называется транскрипцией, а синтез белка в рибосомах по матрице иРНК, в ходе которого происходит «перевод» нуклеотидного кода в последовательность аминокислот — трансляцией. Генетический код ДНК состоит из триплетов, то есть из тройных комбинаций нуклеотидов. При транскрипции генетический код «переписывается» в последовательность нуклеотидов иРНК. Тройки нуклеотидов иРНК, кодирующие аминокислоты, называются кодонами. Из 64 возможных триплетов (4³) 61 являются смысловым кодонами, то есть кодируют аминокислоты. Все кодоны триплетны, неразрывны и не перекрываются в тексте (как считалось по одной из гипотез), а также не разделены межкодонными знаками. Все кодоны однозначны, то есть каждый кодон кодирует единственную аминокислоту. Генетический код содержит в себе также знаки пунктуации (начала и конца трансляции). Кодоны AUG, GUG и UUG у прокариот помимо кодирования аминокислот кодируют ещё и команду начала трансляции. Однако однозначность генетического кода при этом не нарушается, так как инициирующие знаки располагаются в определенном окружении (контексте), способном образовывать самокомплементарные субъединицы. У эукариот инициирующими триплетами являются AUG, UUG, AUA и ACG. Три кодона из 64 (UGA, UAG, UAA) не кодируют аминокислот, а служат знаками окончания трансляции (стоп-кодоны). Обычно ими заканчиваются все транслируемые гены. Возникновение в результате мутации нонсенс-кодонов внутри гена приводит к преждевременной терминации трансляции и прекращению синтеза белка.
Расшифровке генетического кода помог синтез искусственных РНК
В1953 году Фрэнсис Крик совместно с Джеймсом Уотсоном сделал предположение, что только 20 кодонов генетического кода имеют значение, а остальные 44 триплета являются бессмысленными. В 1961 Ф. Крик с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Расшифровать генетический код удалось in vitro, благодаря технике белкового синтеза в бесклеточных системах, то есть в клеточных экстрактах, содержащих все необходимые компоненты аппарата трансляции (тРНК, иРНК, рибосомы, аминокислоты, ферменты, источник энергии (АТФ и ГТФ), а также вспомогательные компоненты), за исключением только принадлежащий клетке мРНК. Вводя в такие экстракты искусственно синтезированные мРНК, можно было изучать включения меченых аминокислот в строящиеся белки. М. Ниренберг и Ф. Ледер провели опыт по помещению в бесклеточную систему трансляции различных олигорибонуклеотидов и выявили, что конкретные тририбонуклеотиды, ассоциированные с рибосомами, связывают только определенные фракции тРНК, с определенными мечеными аминокислотами. Например, олигорибонуклеотид УУУ связывает тРНК, имеющую антикодон ААА и несущую аминокислоту фенилаланин. Следовательно, кодон мРНК УУУ кодирует аминокислоту фенилаланин. С помощью такого метода к 1965 году генетический код был расшифрован полностью. Летом 1966 года на симпозиуме по количественной биологии в Колд-Спринг-Харборе (США) все полученные данные были систематизированы Ф. Криком. Расшифрованный генетический код E. coli, исследованный методом in vitro, полностью согласовывался также с другими независимыми данными, полученными методом in vivo для других видов.
Основные свойства генетического кода одинаковы у всех живых организмов
Генетический код — способ кодирования последовательностью нуклеотидов в ДНК аминокислотной последовательности белков. Для генетического кода характерны следующие свойства (см. следующие разделы):
Триплетность — каждая аминокислота закодирована триплетом — сочетанием трех соседних нуклеотидов ДНК
Вырожденность — большинство аминокислот кодируются более чем одним триплетом
Неперекрываемость — триплеты читаются подряд без перекрывания, начиная с одной стартовой точки
Непрерывность — в пределах участка, кодирующего одну молекулу белка или РНК, триплеты читаются
подряд, без пропусков
Однозначность — каждый триплет кодирует только одну аминокислоту или является терминатором трансляции
Универсальность — все живые существа используют одинаковые наборы кодонов для кодирования одних и тех же аминокислот.
Генные знаки препинания
Участок ДНК, кодирующий одну полипептидную цепь или одну молекулу РНК, называется геном. После каждого кодирующего белок участка гена находится стоп-кодон, регулирующий трансляцию. К таким «знакам препинания» относятся и стоп-кодоны UAA, UAG и UGA. Эти сигналы опознаёт рибосома, но не РНК_полимераза — для неё на ДНК есть свои «стоп-сигналы», состоящие более чем из трех нуклеотидов.
Кодон AUG (первый после лидерной последовательности) выполняет роль «заглавной буквы», то есть кодирует метионин (у эукариот) или формилметионин (у прокариот), с которого начинается образование полипептидной цепи в процессе трансляции.
Кодоны UAA (охра, или Ochre), UAG (амбер-кодон, или Amber) и UGA (опал, или Opal) являются терминаторными кодонами и кодируют прекращение (терминацию) синтеза полипептиднойцепи трансляции.
Если AUG — «заглавная буква», стоп-кодоны — «точки», то с «абзацем» можно сравнить оперон и комплементарная ему мРНК, присутствующие только в прокариотической клетке. Оперон — участок ДНК бактерии, отвечающий за отдельный участок метаболического пути. Он кодирует совместно или последовательно работающие белки, объединенные под одним (или несколькими) промоторами. У эукариот внутригенные стоп-кодоны и иные «знаки препинания» отсутствуют, что было экспериментально доказано Сеймуром Бензером и Фрэнсисом Криком в 1961 году. У прокариот с оперона часто считывается одна молекула полицистронной мРНК. В её нуклеотидной последовательности есть несколько стоп-кодонов, а между ними — рамки считывания для нескольких полипептидных цепочек. При трансляции прокариотическая рибосома «перепрыгивает» стоп-кодоны и продолжает синтез следующего белка, а синтезированная полипептидная цепь при этом отделяется от рибосомы.
Генетический код триплетный
У всех живых организмов генетический код триплетный. Это означает. что одна аминокислота кодируется тремя следующими друг за другом нуклеотидами ДНК - триплетом. Три нуклеотида иРНК, кодирующие одну аминокислоту или представляющие собой сигнал остановки синтеза, называются кодоном. Трёхбуквенные "слова" нуклеотидного языка, в котором есть всего четыре буквы - самые короткие, с помощью которых можно закодировать все 20 основных аминокислот. Если составлять нуклеотидные слова из двух букв, то их будет всего 16 - не хватает! Трёхбуквенных слов хватает уже с избытком - их 64. Почти все триплеты (кроме трех, а в некоторых случаях - кроме одного) значащие, поэтому код вырожденный (см. ниже).
Генетический код неперекрывающийся
В 1956 году американский ученый Джордж Гамов высказал предположение о перекрываемости генетического кода. Оно заключается в следующем: предположим, у нас есть следующая последовательность нуклеотидов: УУАГУААЦГУАА
В этой последовательности могут действовать кодоны
УУА ГУА АЦГ УАА
ххУ УАГ УАА ЦГУ ААх
хУУ АГУ ААЦ ГУА Ахх
Плюс перекрываемого кода — компактность (недаром это свойство обнаружено у некоторых генов вирусов). Минус — явная зависимость структуры белка от замены нуклеотида. После расшифровки генетического кода было показано, что он неперыкрывающийся, то есть в последовательности нуклеотидов УУАГУААЦГУАА действуют только кодоны УУА ГУА АЦГ УАА. Как правило, для каждого гена существует одна открытая рамка считывания.
Генетический код непрерывный
До расшифровки генетического кода выдвигалось предположение, что только 20 кодонов - значащие, остальные пропускаются при считывании кода. Однако выяснилось, что значащих кодонов 61, и лишь три кодона (стоп-кодоны) не кодируют аминокислот. При синтезе белка (трансляции) рибосома движется по иРНК, пока не достигает стоп-кодона, считывая все кодоны подряд, без пропусков. У бактерий многие иРНК полицистронные. Они кодируют несколько полипептидных цепей, и кодирующие их последовательности разделены стоп-кодонами. При трансляции бактериальная рибосома "перескакивает" стоп-кодоны, сразу же начиная синтез следующей полипептидной цепи; белок, синтез которого закончился, при этом отделяется от рибосомы.
Генетический код вырожденный
В 1954 году американский ученый Джордж Гамов высказал предположение о кодировании одним кодоном одной аминокислоты, но это предположение оказалось неверным. Так как триплет состоит из трёх последовательных нуклеотидов, а всего этих нуклеотидов четыре различных, возможных триплетов может быть 4 ³=64 (кроме стоп-кодонов UAA, UAG и UGA, так что не 64, а 61), что превышает количество существующих аминокислот. В связи с этим было высказано предположение, подтвердившееся в дальнейшем, о так называемой вырожденности генетического кода — одну аминокислоту кодирует больше одного триплета, за исключением метионина и триптофана. Отдельные аминокислоты кодируются группами (сериями) кодонов-синонимов. 18 серий из 20 содержат от двух до шести кодонов, две серии (для аминокислот метионина и триптофана) не вырождены и содержат по одному кодону. Средняя вырожденность генетического кода приблизительно равна трём кодонам на серию. Вырожденность называется систематической, если синонимичные кодоны различаются либо пуринами, либо пиримидинами, либо вообще любыми из четырех своих нуклеотидов. Этим принципам удовлетворяют только 30 пар кодонов из 32 возможных, а также только восемь тетрад из 16. Остальные же варианты вырожденности называются несистематическими. Они относятся, как правило, к большим сериям: лейцин и аргинин — связные серии, серин — несвязная серия, изолейцин, кодируемый в три кодона — полносвязная серия.
Генетический код однозначный
Единственный известный на сегодняшний день пример, когда это свойство нарушается — использование кодона UGA у инфузории Euplotes crassus. В зависимости от окружения он кодирует две аминокислоты — цистеин и селеноцистеин [61].
Генетический код универсальный
Универсальность генетического кода означает использование всеми живыми организмами одного генетического кода, то есть все живые существа используют одинаковые наборы кодонов для кодирования одних и тех же аминокислот.
Мутации и их последствия
Мута́ция — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа. Процесс возникновения мутаций называется мутагенез. Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно в нормальных для организма условиях окружающей среды с частотой около {\displaystyle 10^{-9}} {\displaystyle 10^{-9}} — {\displaystyle 10^{-12}} {\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию. Индуцированные мутации возникают в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды. Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарация ДНК и генетическая рекомбинация.
Связь мутаций с репликацией ДНК
Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за деаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция.
Связь мутаций с рекомбинацией ДНК
Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.
Связь мутаций с репарацией ДНК
Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах белков, ответственных за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов.
Репарация ДНК
Репарация (от лат. reparatio — восстановление) — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки.
Источники повреждения ДНК
Ультрафиолетовое излучение
Радиация
Химическое соединение
Ошибки репликации ДНК
Апуринизация — отщепление азотистых оснований от сахарофосфатного остова
Дезаминирование — отщепление аминогруппы от азотистого основания
Основные типы повреждения ДНК[править]
Повреждение одиночных нуклеотидов
Повреждение пары нуклеотидов
Разрыв цепи ДНК
Образование поперечных сшивок между основаниями одной цепи или разных цепей ДНК
Устройство системы репарации
Каждая из систем репарации включает следующие компоненты:
хеликаза — фермент, «узнающий» химически изменённые участки в цепи и осуществляющий разрыв цепи вблизи от повреждения;
фермент, удаляющий повреждённый участок;
ДНК-полимераза — фермент, синтезирующий соответствующий участок цепи ДНК взамен удалённого;
ДНК-лигаза — фермент, замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывно
Типы репарации
У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная. У эукариот к ним добавляется еще mismatch-репарация и Sos-репарация.
Прямая репарация
Прямая репарация — наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина.
Эксцизионная репарация
Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы.
Пострепликативная репарация
Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA. Пострепликативная репарация была открыта в клетках E.сoli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.
Транскрипция и трансляция — основные этапы синтеза белка
Транскрипция — синтез РНК по матрице ДНК. У эукариот транскрипция происходит в ядре, а также в митохондриях и пластидах (как вы помните, у этих органелл есть собственный геном). В ходе транскрипции происходит синтез мРНК, тРНК и рРНК, которые непосредственно задействованы в синтезе белка, а также всех остальных типов РНК клетки (siРНК, piРНК, гидовые РНК, малые ядерные РНК и др.). Трансляция — процесс синтеза белка на рибосомах, который происходит в цитоплазме клеток, а у эукариот - также в митохондриях и хлоропластах.
Транскрипция — синтез РНК на ДНК
Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимераза движется в направлении 3'->5'. Транскрипция - первый этап экспрессии гена. Если ген кодирует белок, то второй этап его экспрессии - трансляция, синтез белка на рибосомах. Но многие гены не кодируют белков. Это гены рРНК и тРНК, а также множества малых РНК, имеющих регуляторные или ферментативные функции. Такие гены при экспрессии не транслируются, а только транскрибируются; этаопм их экспрессии можно считать созревание (процессинг) РНК. Транскрипция состоит из стадий инициации, элонгации и терминации.
Транскрипция у прокариот
Особенности транскрипции у эукариот. Процессинг и сплайсинг РНК
Практические все гены эукариот имеют экзон-интронную структуру. Они содержат экзоны (участки, кодирующие белок или РНК) и находящиеся между ними интроны - участки, которые ничего не кодируют. С ДНК при транскрипции считывается первичный транскрипт - РНК, содержащая и экзоны, и интроны. Затем интроны удаляются в ходе сплайсинга. Сплайсинг - лишь один из этапов процессинга РНК. Процессинг - совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта РНК в зрелую РНК. Например, в ходе процессинга иРНК происходит ее кэпирование и полиаденилирование (см. ниже).
Структура зрелой эукариотической иРНК.
После процессинга иРНК содержит 5' кэп, 5' некодирующий участок (UTR), кодирующий участок (CDS), 3' некодирующий участок (UTR) и поли-А хвост.
Роль рРНК, тРНК и иРНК в клетке
Третичная структура тРНК. CCA-хвост показан оранжевым, акцепторный стебель — лиловым, D-плечо — красным, участок с антикодоном — голубым, антикодон — черным, Т-плечо — зелёным
тРНК — небольшие (длиной обычно от 74 до 95 нуклеотидов) молекулы РНК, которые переносят аминокислоты в рибосомы и обеспечивают их включение в состав растущей белковой цепи в ходе трансляции.
Трансляция
Трансляция — осуществляемый рибосомой синтез белка из аминокислот на матрице информационной (или матричной) РНК (иРНК или мРНК). Трансляция может происходить в клетках и в искусственных бесклеточных системах. Чтобы в пробирке с физиологическим раствором могла идти трансляция, туда необходимо добавить:
рибосомы - "машины" для синтеза белка),
иРНК - матрицы,
тРНК - переносчики аминокислоты и "адаптеры", переводящие нуклеотидный код в последовательность аминокислот,
аминокислоты - строительный материал,
специальные ферменты аминоацил-тРНК-синтетазы - обеспечивают специфичное присоединение каждой аминокислоты к "своей" тРНК
молекулы АТФ и ГТФ, гидролиз которых служит источником энергии для синтеза белка.
Кроме этого, для нормального синтеза белка необходим ряд дополнительных белков, не входящих в состав рибосом - факторы инициации, элонгации и терминации.
Рибосомы — машины для синтеза белка
Рибосомы - это немебранные органоиды, отвечающие за синтез белков и содержащиеся во всех клетках, и даже некоторых органоидах, а именно – митохондриях и хлоропластах. Рибосомы состоят из двух субъединиц - большой и малой. Эти субъединицы собираются в ядрышке. Рибосомы можно поделить на две группы: сидячие и свободные. По функциям они принципиально не различаются. Единственное различие в том,что сидячие рибосомы расположены на шероховатой эндоплазматической сети, а свободные находятся в цитоплазме. Нередко рибосомы образуют полирибосомы (полисомы) — цепочки из рибосом, расположенных на нити иРНК.
Этапы трансляции
Во время процесса транскрипции информация с ДНК копируется на РНК. Информационная РНК (иРНК) становится матрицей для синтеза белка. Транспортная РНК доставляет в рибосому строительный материал для синтеза белка — аминокислоты. После того, как иРНК и аминокислоты попали в рибосому, тРНК переводит генетический код аминокислоты, считывая кодон РНК (т.к. имеет антикодон).А специфичное присоединение аминокислот к соответствующей тРНК обеспечивает особый фермент — аминоацил-тРНК-синтетаза. Энергию для синтеза обеспечивает гидролиз молекул ГТФ. К одной молекуле РНК часто присоединяется множество рибосом, образуя "бусы" из рибосом — полирибосому, или полисому. Рибосомы одна за другой "ползут" по нити иРНК. Когда рибосома достигает стоп-кодона, она распадается на половинки - субъединицы.
Центральная догма молекулярной биологии. Передача и реализация наследственной информации
«Это был тот самый дух, который вскоре принес нам „центральную догму“, против чего я выступил, по-моему, первым… Я увидел в этом первые ростки чего-то нового — какой-то нормативной биологии, которая повелевает природе вести себя в соответствии с нашими моделями.» Э. Чаргафф
Строение лактозного оперона
Оперон — функциональная единица генома у прокариот, в состав которой входят гены, кодирующие совместно или последовательно работающие белки и часто объединенные под одним промотором. Концепцию оперона для прокариот предложили в 1961 году французские ученые Франсуа Жакоб, Жан Моно и Андре Львов, за что получили Нобелевскую премию в 1965 году. Характерным примером оперонной организации генома прокариот является лактозный оперон. Регуляция экспрессии генов метаболизма лактозы у кишечной палочки (Escherichia coli) была впервые описана в 1961 году учеными Ф. Жакобом и Ж. Моно. Лактозный оперон (lac оперон) — полицистронный оперон бактерий, в состав которого входят гены, отвечающие за усвоение и расщепление лактозы. Лактозный оперон состоит из промотора, оператора, трех структурных генов и терминатора. Иногда принимается, что в состав оперона входит также ген-регулятор, который кодирует белок-репрессор. Промотор — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала специфической, или осмысленной, транскрипции. У прокариот все промоторы включают ряд похожих последовательностей нуклеотидов, важных для узнавания их РНК-полимеразой; в то же время разные промоторы отличаются друг от друга по другим последовательностям. Промотор асимметричен, что позволяет РНК-полимеразе начать транскрипцию в правильном направлении и указывает то, какая из двух цепей ДНК будет служить матрицей для синтеза РНК. Промотор может частично перекрываться или вовсе не перекрываться с оператором. Оператор — это последовательность нуклеотидов ДНК, с которой связывается регуляторный белок — репрессор или активатор.
Структурные гены — это гены, кодирующие белки.
Структурные гены лактозного оперона — lacZ, lacY и lacA:
lacZ кодирует фермент β-галактозидазу, которая расщепляет дисахарид лактозу на глюкозу и галактозу,
lacY кодирует β-галактозид пермеазу, мембранный транспортный белок, который переносит лактозу внутрь клетки.
lacA кодирует β-галактозид трансацетилазу, фермент, переносящий ацетилную группу от ацетил-КoA на бета-галактозиды. Для усвоения лактозы необходимы только продукты генов lacZ и lacY, роль продукта гена lacA не ясна. При транскрипции с лактозного оперона считывается одна полицистронная мРНК, в которой закодированы все три белка. С неё сразу же начинают считываться эти белки, причем рибосомы «перескакивают» стоп-кодоны, разделяющие нуклеотидные последовательности, кодирующие каждый из белков. (Для прокариот полицистронные РНК обычны, у эукариот они практически не встречаются).
Регуляция работы лактозного оперона
Бактериальная клетка синтезирует ферменты, принимающие участие в метаболизме лактозы, лишь в том случае, когда лактоза присутствует в окружающей среде и клетка испытывает недостаток глюкозы. РНК-полимераза начинает транскрипцию с промотора, который в случае лактозного оперона перекрывается с оператором. В отсутствие или при низкой концентрации лактозы в клетке белок-репрессор, который является продуктом гена LacI, обратимо соединяется с оператором и препятствует транскрипции. Таким образом, в отсутствие лактозы в клетке ферменты для метаболизма лактозы не синтезируются. Даже в случае, когда в плазматической мембране клетки отсутствует фермент β-галактозидпермеаза, лактоза из окружающей среды может попадать в клетку в небольших количествах. В клетке две молекулы лактозы связываются с белком-репрессором, что приводит к изменению его конформации и далее к отделению белка-репрессора от оператора. Теперь может осуществляться транскрипция генов лактозного оперона. При снижении концентрации лактозы новые порции белка-репрессора взаимодействуют с операторными последовательностями и препятствуют транскрипции. Данный механизм регуляции активности лактозного оперона называют позитивной индукцией. Веществом-индуктором служит лактоза; при её связывании с белков-репрессором происходит его отделение от оператора. Если в клетке концентрация глюкозы достаточная для поддержания обмена веществ, активация лактозного оперона не происходит. Промотор лактозного оперона «слабый» — даже при отсутствии белка-репрессора на операторе транскрипция практически не инициируется без дополнительных условий. Когда концентрация глюкозы в клетке снижается, происходит активация фермента аденилатциклазы, которая катализирует превращение АТФ в циклическую форму — цАМФ (цАМФ в данном случае также называют «сигналом клеточного голода»). Глюкоза — ингибитор фермента аденилатциклазы; кроме того, она активирует фосфодиэстеразу — фермент, катализирующий расщепление цАМФ. цАМФ соединяется с белком, активирующим катаболизм (англ. САР, catabolism activating protein). Образуется комплекс цАМФ-CAP, который взаимодействует с промотором лактозного оперона, изменяет его конформацию и приводит к повышению сродства РНК-полимеразы к данному участку. В присутствии лактозы и при высокой концентрации цАМФ (то есть в отсутствии глюкозы) происходит активная транскрипция генов оперона, активно синтезируются ферменты для усвоения лактозы. Механизм регуляции активности лактозного оперона глюкозой называют негативной индукцией — глюкоза служит «негативным индуктором», то есть веществом, в присутствии которого лактозный оперон «выключен». Итак, ферменты для усвоения лактозы синтезируются в клетке кишечной палочки при двух условиях:
1) наличие лактозы;
2) отсутствие глюкозы.
Биологический смысл
Благодаря описанному механизму регуляции транскрипции генов, входящих в состав лактозного оперона, бактерии оптимизируют энергетические затраты, синтезируя ферменты метаболизма лактозы не постоянно, а лишь тогда, когда клетке это необходимо. Сходный механизм регуляции имеется у большинства прокариот; у эукариот он устроен значительно сложнее. Регуляция работы лактозного оперона в зависимости от концентрации лактозы происходит по принципу отрицательной обратной связи: чем больше лактозы — тем больше ферментов для её усвоения (положительная прямая связь); чем больше ферментов — тем меньше лактозы, чем меньше лактозы — тем меньше производится ферментов (двойная отрицательная обратная связь).
Регуляция работы генов эукариот
У эукариот опероны отсутствуют, и система управления активностью генов более сложная. Во-первых, у эукариот часто одновременно включаются не три гена (или чуть больше), а целые батареи генов. Во-вторых, регуляция активности генов происходит не только за счет связывания белков с промоторами генов, но и за счет взаимодействия с генами энхансеров и сайленсеров, за счет спирализации и деспирализации хромосом и других механизмов. В-третьих, у эукариот регуляция работы генов чаще происходит не по принципу «да–нет», а по принципу «больше–меньше». В клетках эукариот от ДНК исходят сигналы, которые в конечном счете передаются РНК-полимеразе: стимулируют или подавляют инициацию синтеза РНК. Источником сигналов служат определенные локусы ДНК — регуляторные элементы. Эти участки имеют небольшие размеры, порядка 10 н. п. Регуляторные элементы, стимулирующие транскрипцию, называют энхансерами (англ. enhancer — усилитель), а подавляющие транскрипцию — сайленсерами (англ. silencer — глушитель, успокоитель). Регуляторные элементы могут избирательно соединяться с белками-регуляторами. Белки, соединяющиеся с энхансерами, называют индукторами, а соединяющиеся с сайленсерами — репрессорами. Цис-элементы действуют на гены только той молекулы ДНК, в которой они сами находятся. Энхансеры и сайленсеры могут располагаться вблизи от промотора и от стартовой точки транскрипции регулируемого гена, но могут быть и удалены от него, даже на тысячи нуклеотидных пар, как в сторону 5'-конца, так и в сторону З'-конца. Однако они могут быть сближены в результате изгибания молекулы ДНК. Белки-регуляторы (индукторы и репрессоры) содержат по крайней мере три домена:
домен, узнающий определенную нуклеотидную последовательность ДНК; ;
домен, узнающий трансэлементы;
домен, взаимодействующий с факторами транскрипции в области ТАТА-последовательности; в результате этого белки-регуляторы влияют на транскрипцию, а именно увеличивают (индукторы) или уменьшают (репрессоры) частоту инициации транскрипции. Каждый ген регулируется независимо от других. Следовательно, для каждого гена существуют специфические регуляторные элементы (локусы ДНК) и специфические регуляторные белки, узнающие эти элементы. Уже известно много регуляторных белков и регуляторных элементов разных генов, и постоянно обнаруживаются все новые и новые. Присоединение регуляторных белков к энхансерам или сайленсерам зависит от других веществ — трансэлементов, сигнальных молекул, приносимых в клетку с кровью или образующихся в самой клетке. К числу таких молекул относятся гормоны, некоторые метаболиты, ионы металлов. Есть регуляторные белки, реагирующие на изменение температуры. Все эти сигналы стимулируют присоединение индукторов к соответствующим энхансерам или репрессоров к соответствующим сайленсерам. Трансэлементами их называют потому, что они могут действовать на любую молекулу ДНК (любую хромосому), если только в ней есть подходящий цис-элемент.
Основные способы питания и получения энергии
Все живые организмы с точки зрения физики — открытые системы. Они обмениваются с окружающей средой веществами, энергией и информацией. Внешние источники энергии нужны живым системам, чтобы получать из внешней среды и использовать вещества для роста и размножения, двигаться, выбирая лучшие условия для жизни, поддерживать высокую упорядоченность (например, синтезировать сложные веществ из простых и доставлять определенные вещества в разные части клеток, создавая из сложную структуру). При любых процессах превращения энергии, которые происходят в живых системах (и в неживых тоже!) часть энергии рассеивается в виде тепла, и её невозможно повторно использовать для совершения полезной работы. «Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии) — одна из формулировок второго начала термодинамики — в применении к живым системам означает. что без притока энергии извне невозможно поддерживать сложную структуру. Поэтому все живые системы относятся к диссипативным. Внешние источники веществ нужны, так как в ходе обмена веществ образуются ядовитые «осколки» молекул. Например, при превращении аминокислот в глюкозу выделяется ядовитый аммиак — NH3. Эти вещества выводятся из организма, а новые атомы азота должны поступать с пищей. На выведение ядовитых отходов расходуется вода, в которой они растворяются, так что её запасы тоже приходится восполнять. Наконец, часть органики используется организмами для получения энергии в ходе гликолиза, клеточного дыхания и других процессов. При этом органические молекулы расщепляются, и конечными продуктами могут быть такие вещества, как углекислый газ или водород, которые также выводятся и которые данный организм не может использовать для повторного синтеза органических веществ. Способы питания и получения энергии живыми организмами, как и все биологические явления и процессы, можно классифицировать по-разному. Первая классификация основана на том, какой внешний источник энергии использует живой организм. Таких источников для основных процессов жизнедеятельности всего два - свет и энергия химических связей молекул. Если организм использует в качестве источника энергии свет, то это фототроф. Если же источник энергии для организма - энергия химических связей (не важно. органических или неорганических молекул) - это хемотроф.
Строение митохондрий
Митохондрии — округлые или цилиндрические тельца диаметром 1-2 микрометра, окруженные двумя мембранами. Во внутреннюю мембрану заключено содержимое митохондрии — матрикс. Матрикс содержит генетический материал митохондрий (кольцевые, реже линейные молекулы ДНК), рибосомы и другие компоненты системы синтеза белка, ферменты, участвующие в цикле Кребса). Внутренняя мембрана митохондрий образует впячивания — кристы. Во внутреннюю мембрану встроены белки цепи переноса электронов, а также протонная АТФ-синтетаза. Митохондрии разных эукариот сильно различаются по размерам и числу в клетке, форме крист, количеству и структуре молекул ДНК и другим признакам.
Теория симбиогенеза: происхождение митохондрий
Гипотеза симбиотического происхождения хлоропластов впервые появилась в 1883 году. Её предложил Андреас Шимпер. Достаточно подробно в 1910-е годы теорию симбиогенеза обосновал К.С. Мережковский. В 1920-е годы теория симбиогенеза была развита Б.М. Козо-Полянским, был предложен вариант симбиотического происхождения митохондрий. Активное развитие теории началось уже в работе Линн Маргулис с 1960 года. Согласно теории симбиогенеза митохондрии произошли от бактерий-симбионтов. Древние протоэукариоты не могли использовать кислород для генерации энергии, поэтому они вступили в симбиотическую связь с будущими митохондриями, захватив их в результате фагоцитоза. В результате эволюции они больше не могут существовать без клеток.
Митохондрии обладают признаками бактерий:
1. У них имеется 2 замкнутые мембраны, унаследованные от их предков - грамотрицательных бактерий.
2. Размножаются бинарным делением, и только делением.
3. Есть кольцевая ДНК.
4. Имеют рибосомы прокариотического типа для синтеза белков.
То же самое можно сказать и о пластидах. Основные процессы, происходящие в митохондриях.
Молекулярная модель АТФ-синтазы
Созданный протонный градиент использует для синтеза АТФ белок со сложной четвертичной структурой - протонная АТФ-синтетаза. Этот белок состоит из закрепленного во внутренней мембране митохондрии статора и вращающегося ротора. При одном обороте ротор пропускает через себя с наружной стороны мембраны на внутреннюю, в матрикс, около десятка протонов через специальный канал. За счет энергии, которая при этом расходуется, меняется конформация трех субъединиц ротора, где происходит синтез трех молекул АТФ из АДФ и фосфорной кислоты.При этом электрическая энергия протонного градиента преобразуется сначала в механическую, а затем - в энергию химических связей АТФ. КПД этого процесса приближается к 100% - больше, чем у любых созданных человеком устройств, преобразующих энергию.
Теория симбиогенеза: происхождение хлоропластов
Хлоропласты клетки, как и митохондрии - потомки бактерий. Предками хлоропластов красных и зеленых водорослей, а также глаукофитовых водорослей были цианобактерии. Цианобактерии относятся к грам-отрицательным бактериям (как и предки митохондрий), и пластиды унаследовали от них обе мембраны - плазматическую и наружную. У хоропластов глаукофитовых между ними сохранилась рудиментарная клеточная стенка (их пластиды называют цианеллами, подчеркивая сходство с цинобактериями; однако по размеру генома они похожи на "обычные" пластиды). Такие пластиды, окруженные двумя мембранами, называют первичными. Пластиды остальных групп водорослей (бурых, диатомовых, эвгленовых, криптофитовых, динофлагеллят и др.) возникли в результате вторичного эндосимбиоза - поглощения эукариотических водорослей бесцветными фаготрофными протистами. Многие из таких вторичных пластид окружены не двумя, а тремя или четырьмя мембранами.
Строение и функции плазматической мембраны
Наружная мембрана клеток (плазматическая мембрана, плазмалемма) — обязательный компонент любой клетки. Она состоит из двух слоёв молекул фосфолипидов (см. Фосфолипиды), обязательно содержит белки и может содержать другие вещества (например, в состав плазмалеммы животных клеток входит холестерин). Сходное строение имеют и мембраны органелл клетки. Фосфолипиды амфифильны и самопроизвольно образуют бислои при взаимодействии с водой. Полуобъёмная реконструкция структур, которые могут формировать фосфолипиды при взаимодействии с водой. Так как молекулы фосфолипидов амфифильны, их гидрофильные «головы» притягивают к себе диполи воды, а гидрофобные «хвосты» «стремятся» избежать взаимодействия с водой. Если растворить фосфолипиды в эфире или ацетоне и вылить раствор на поверхность воды, то при определенных условиях формируется слой толщиной всего в одну молекулу. В этом слое все «головы» фосфолипидов погружены в воду, а «хвосты» торчат из воды. Если перемешать фосфолипиды с водой (например, встряхиванием или действуя ультразвуком), то истинный раствор (в котором молекулы плавают поодиночке) не возникнет. В толще воды формируются разные структуры из фосфолипидов, в том числе мицеллы и липосомы. Молекулы мыла, в которых присутствует один остаток жирной кислоты, более склонны к образованию мицелл (см. рис.). Молекулы фосфолипидов чаще образуют липосомы, стенка которых состоит из двойного слоя молекул. В таком липидном бислое гидрофобные "хвосты" с двух сторон заэкранированы "головами" и не контактируют с водой. Те же силы гидрофильно-гидрофобных взаимодействий делают липидные бислои самозамыкающимися. Любое отверстие в слое создает свободные края, а там гидрофобные хвосты соприкасаются с водой. Это энергетически невыгодно, и молекулы бислоя спонтанно перегруппировываются так, что края исчезают. Если отверстие небольшое, то оно в результате замыкается. Если же отверстие велико, то слой может разделиться на несколько замкнутых пузырьков. В обоих случаях свободные края удаляются.
Липидный бислой — основа биологических мембран
Основой всех биологических мембран, кроме мембран клеток архей, служит фосфолипидный бислой. Вверху — фосфолипид архей, в центре — фосфолипид бактерий и эукариот, внизу справа — мембрана бактерий и эукариот, слева — мембрана архей в виде монослоя. У архей мембрана состоит из бислоя или монослоя фосфолипидов, представляющих собой эфиры глицерина и изопреноидных спиртов (алкилов) с разветвленными цепями, а иногда и с циклопропановыми или циклогексановыми кольцами. Изопреноиды имеют длину 20 (в случае бислоя) или 40 (в случае монослоя) атомов. У фосфолипидов однослойных мембран архей (таких, как показанный на рис.слева внизу диалкилглицерол-тетраэфир) две гидрофильные головки. Фосфолипиды, входящие в состав мембран, у эукариот довольно разнообразны; роль их разнообразия не до конца ясна. В состав мембран эукариотических клеток входит холестерин.
Задача. Известно, что эритроциты человека практически лишены внутренних мембран. Зная размеры и форму эритроцитов, можно определить их площадь поверхности. Допустим, что общая площадь поверхности эритроцитов из 1 мм³ крови составляет около 250 мм² (попробуйте оценить, насколько правдоподобно это число). Можно разрушить эритроциты, растворить их мембраны в ацетоне и вылить раствор на поверхность воды. При определенных условиях фосфолипиды образуют слой толщиной в одну молекулу. Какова будет площадь этого слоя? Каковы возможные ошибки этой оценки?
Липидный бислой - двумерная жидкость
Молекулы фосфолипидов самопроизвольно (без участия ферментов) очень редко перемещаются из одного слоя мембраны в другой. Поэтому наружный и внутренний слои могут отличаться по составу фосфолипидов. Однако в пределах «своего» слоя в определённом диапазоне температуры молекулы фосфолипидов двигаются примерно с такой же скоростью, что и в жидкости. Образно говоря, мембрана — «двумерная жидкость». Отдельная молекула фосфолипида в этой жидкости перемещается за секунду в среднем на расстояние около 2 мкм. Так что на картинке вверху движение молекул фосфолипидов не такое, как в жизни. Зато на картинке видно, что эти молекулы время от времени слегка «выпирают» из слоя, а между ними образуются небольшие щели. Так и происходит на самом деле. Течучесть мембран обеспечивает самозамыкание (о его причинах - см. выше). Если воткнуть в клетку тонкую иглу или трубку (микропипетку), а затем вытащить её обратно, то во многих случаях клетка остается целой и невредимой. Образовавшееся в мембране отверстие затягивается, как пленка нефти на поверхности воды, и содержимое клетки не успевает вытечь наружу.
Задача. Как Вы думаете, почему текучесть мембраны важна для ее функционирования? Какие функции мембраны нарушились бы при резком уменьшении текучести?
Текучесть мембраны падает при понижении температуры. При определенной температуре текучесть зависит от состава мембраны. Чем теснее упакованы "хвосты" фосфолипидов, тем менее текучей будет мембрана. Главные свойства углеводородных хвостов, влияющие на плотность упаковки – их длина и количество в них двойных связей. При увеличении длины "хвостов" (она варьирует от 14 до 24 атомов углерода) текучесть мембраны понижается. Двойные связи в остатках ненасыщенных жирных кислот создают изгибы "хвостов", снижают плотность упаковки и повышают текучесть мембраны.
Задача. В каком масле больше ненасыщенных жирных кислот - сливочном или подсолнечном? Ответ обоснуйте.
У бактерий, грибов и растений при повышении температуры синтезируются фосфолипиды с более длинными "хвостами" и/или меньшим числом двойных связей, чтобы поддерживать текучесть мембран на постоянном уровне. У животных на текучесть мембран сильнее влияет содержание холестерина. При высокой (35-400С) температуре он снижает текучесть. При низкой температуре он препятствует "замерзанию" мембраны, способствует сохранению подвижности молекул фосфолипидов. Особенно много холестерина в наружной мембране (до 50%, то есть по одной молекуле холестерина на каждую молекулу фосфолипидов). Вопреки распространенному мнению, стеролы (к которым относится и холестерин) присутствуют и в мембранах клеток некоторых прокариот. Наиболее полный путь биосинтеза стеролов найден у миксобактерий. Правда, нельзя исключить, что часть генов, необходимых для синтеза стеролов, они получили от эукариот путем горизонтального переноса
Липосомы — искусственные бислойные структуры, используемые в практике
Жидкие свойства мембран можно изучать, используя искусственные липидные бислои. Часто в опытах используют замкнутые сферические пузырьки – липосомы. Они образуются, если в воду помещают чистые фосфолипиды; их диаметр варьирует от 25 нм до нескольких микрометров (чаще - 25-250 нм).
Основные функции наружной мембраны
Отграничительная функция.
Наружная мембрана обеспечивает целостность клетки, не давая её содержимому (растворимым веществам цитоплазмы) смешаться с окружающей средой или межклеточной жидкостью.
Транспортная функция.
Важное свойство мембраны, связанное с выполнением этой функции — избирательная проницаемость. Некоторые вещества свободно проходят через липидный бислой за счет диффузии, для других он практически непроницаем. За транспорт таких веществ в клетки и из клеток отвечают особые транспортные белки.
Рецепторная функция.
Белки-рецепторы, имеющиеся на наружной мембране любой клетки, обеспечивают восприятие сигналов из внешней среды, их передачу в клетку и запуск ответной реакции. Самый распротсраненный вид сигналов — химические вещества, которые связываются с рецепторами.
Образование межклеточных контактов.
Белки — обязательный компонент биологических мембран.
Типы мембранных белков
Для многих веществ, которые необходимы клетке для роста и получения энергии, липидный бислой практически непроницаем. Так, очень медленно диффундируют через него глюкоза и другие моносахариды, аминокислоты и нуклеотиды. Уже из этого ясно, что в мембране должны существовать «поры» для транспорта веществ в клетку и из клетки. Транспорт веществ, которые медленно проходят через липидный бислой, осуществляют транспортные белки. Две их основные разновидности - это белки-каналы и белки-переносчики. Рецепторную функцию мембраны тоже обеспечивают белки. Это - белки-рецепторы. (Часто в состав мембранных рецепторов входят олигосахарадиные цепи, так что, строго говоря, это гликопротеиды). При этом часть рецепторов одновременно служат и ионными каналами. Это, прежде всего, рецепторы нейромедиаторов. Другие рецепторы являются ферментами - они либо активируют специальные белки-посредники (G-белки), либо "работают" протеинкиназами.
Другие компоненты мембран, их роль
В состав клеточных мембран всегда входят белки, а в составе большинства мембран присутствуют также углеводы (точнее, гликолипиды и гликопротеиды). В состав клеточных мембран животных входит холестерин.
Отграничительная функция. Слияние и разделение клеток
Наружная мембрана обеспечивает целостность клетки, не давая её содержимому (растворимым веществам цитоплазмы) смешаться с окружающей средой или межклеточной жидкостью. Только самые мелкие из органических молекул клетки с заметной скоростью «теряются», проходя сквозь липидный бислой. Замечательная особенность мембраны, связанная с выполнением этой функции — её текучесть. Мембрана представляет собой «двухмерную жидкость» — молекулы фосфолипидов быстро (как в жидкости) диффундируют в плоскости «своего» слоя мембраны. Поэтому мембрана способна к самозамыканию. Если проткнуть мембрану сравнительно тонкой иглой или трубочкой, а потом вынуть её, во многих случаях клетка останется целой — мембрана сомкнётся и «залечит» отверстие.
Тепловое движение молекул — одно из основных свойств материи
Хаотическое тепловое движение частиц вещества, таких как атомы и молекулы
Теплово́е движе́ние' — процесс хаотического (беспорядочного) движения частиц, образующих вещество. Чаще всего рассматривается тепловое движение атомов и молекул.
Хаотичность — важнейшая черта теплового движения. Важнейшими доказательствами существования движения молекул является броуновское движение и диффузия.
Пассивный транспорт не требует затрат энергии
Пассивный транспорт — транспорт, не требующий затрат энергии. Он всегда идет по градиенту концентрации — оттуда, где вещества больше, туда, где его меньше. При этом вещества могут диффундировать через липидный бислой (простая диффузия) или проходить через специальные каналообразующие белки (облегченная диффузия). Иногда пассивный транспорт происходит при участии белков-переносчиков. Через липидный бислой путем пассивного транспорта проходят малые неполярные молекулы (кислород, углекислый газ, азот, бензол) и полярные молекулы массой до 100 дальтон (глицерин, этанол и др.). ВОда обычно также проходит в клетки и из клеток чеез липдных бислой; в особых случаях, когда транспорт воды нужно резко ускорить, она рпоходит через особые канальные белки - аквапорины. У человека аквапорины экпрессируются многими клетками - прежде всего, клетками почечных канальцев и эритроцитами. Мутации генов аквапоринов приводят к некоторым наседственным болезням - например. могу вызывать наследственную катаракут и наследственный несахарный диабет. Аквапорины и родственные белки - акваглицеропорины - есть также у растений, грибов, протистов и бактерий. Через акваглицеропорины могут проходить глицерин, мочевина, а также (у растений) ортоборная и ортокрмниевая ислоты и похожие на них соединения.
Осмос - диффузия растворенных веществ
Частный случай пассивного транспорта —- осмос. Обычно осмосом называют диффузию растворителя через преграду, непроницаемую для растворенных веществ. Такие преграды — это обычно тонкие пленки (например, пленки из целлофана, в которые упаковывают многие сорта сосисок). Типичная полупроницаемая пленка — липидный бислой биологических мембран.
Белки-каналы, их строение и функции
Белки-каналы - порообразующие белки, пронизывающие клеточные мембраны. Они имеют сложную третичную, а часто и четвертичную структуру (многие каналы состоят из 2-6 полипептидных цепей). В центре канала находится водная пора. Самое узкое место поры (селективный фильтр) по диаметру лишь немного превышает диаметр атома. У многих каналов есть "ворота" - участки молекулы, которые могут менять конформацию и закрывать пору. У таких каналов есть как минимум два состояния - открытое и закрытое. Наконец. у части каналов есть дополнительный участок (домен), часто похожий по форме на шарик на подвижной проволочке. который может закрывать канал при определенных условиях, делая его нечуствительным к воздействиям. обычно открывающим канал. Такое состояние канала называется инактивированным. Большинство каналов пропускает определенные ионы. Некоторые каналы пропускают все ионы одного знака заряда (катионы или анионы. Многие каналы пропускают преимущественно одну разновидность ионов. На мембране большинства клеток есть каналы для ионов натрия, калия, хлора и кальция. Многие натриевые каналы непроницаемы для ионов калия. Это неудивительно, так как ионы калия имеют больший диаметр. Но и многие калиевые каналы непроницаемы для ионов натрия! Лишь недавно удалось понять, как обеспечивается такая избирательность. Два основных типа каналов - лиганд-зависимые и потенциал-зависимые. Лиганд-зависимые каналы открываются при присоединении к ним извне какого-либо вещества (лиганда). Этим они похожи на белки-рецепторы (такие каналы - то же самое, что ионотропные рецепторы). Потенциал-зависимые каналы открываются или закрываются в зависимости от разности потенциала на мембране клетки. Существуют и другие типы каналов. Например, многие каналы открываются при воздействии на них циклических нуклеотидов (цАМФ или цГМФ)не извне, а из цитоплазмы, с внутренней стороны мембраны. Есть механочувствительные каналы. Некоторые из них открываются при растяжении мембраны. В других случаях канал при натяжении открывает присоединенный к нему элемент цитоскелета или внеклеточного матрикса (так, например, открываются и закрываются натриевые каналы на волосковых клетках внутреннего уха позвоночных.
Белки-переносчики
Белки-переносчики — это ещё одна группа транспортных белков. Они участвуют в транспорте веществ, которые не могут пройти сквозь липидный бислой. Белки-переносчики связываются с ионами или молекулами того вещества, которое они переносят, и доставляют их в клетку или из клетки. От белков–каналов они отличаются тем, что белки-канала - порообразующие белки, они пропускают вещества сквозь заполненную водой пору, а не захватывают и не перетаскивают их на другую сторону мембраны. Чтобы лучше понять принцип работы белков-переносчиков, рассмотрим работу натрий-калиевой АТФазы. Натрий-калиевая АТФаза присутствует на мембране почти всех клеток человека. Она действует как насос, перекачивая ионы Na+ из клетки во внешнюю среду, а ионы К+ в клетку. Na+/K+ АТФаза отвечает за поддержание мембранного потенциала клетки. Как же происходит перенос ионов Na+ и K+? Сначала к натрий-калиевой АТФазе присоединяются три иона Na+, из-за чего изменяется конформация АТФазы. Затем АТФаза расщепляет молекулу АТФ на АДФ и фосфат (РО-³4). При этом фосфат-ион присоединяется к поверхности белка. Энергия, выделившаяся за счёт расщепления АТФ, расходуется на изменение конформации АТФазы. После всех превращений белок „переворачивается“, и три иона Na+ оказываются на внешней стороне мембраны, а фосфат заменяется на два иона K+, при этом ионы K+присоединяются не к тому месту, где были ионы Na+ , а связываются со своим определённым участком. Из-за этого АТФаза вновь меняет свою конформацию, и ионы К+ переносятся на внутреннюю сторону мембраны. Здесь ионы К+ отсоединяются от АТФазы. Кроме натрий-калиевой АТФазы есть также кальциевая АТФаза, хлорная АТФаза и другие. Важная особенность белков-насосов заключается в том, что каждый ион движется из области низкой концентрации в область высокой, то есть каждый ион перемещается против своего градиента концентрации. Это движение называется активным транспортом и может происходить только при помощи расходования АТФ. Помимо активного транспорта белки-переносчики могут осуществлять пассивный транспорт, перемещая вещества из области высокой концентрации в область низкой. Также этот транспорт называют облегчённой диффузией. Например, поступление глюкозы в эритроциты происходит при помощи облегчённой диффузии.
Активный транспорт. Примеры и роль активного транспорта
Активный транспорт обычно обеспечивается белками-переносчиками, которые обладают АТФ-азной активностью.
Рецепторная функция. Типы белков-рецепторов
У любых клеток есть мембранные белки-рецепторы. Это трансмембранные белки, пересекающие липидный бислой один или несколько раз. В состав многих из них входят олигосахариды (такие рецепторы правильнее называть гликопротеидами). Такие белки присутствуют не только на наружной мембране, но и на многих внутриклеточных мембранах. Например, рианодиновые рецепторы и рецепторы инозитолтрифосфата есть на мембране эндоплазматического ретикулума. Мембранные рецепторы связывают сигнальное вещество (лиганд) и при этом изменяют свою конформацию. Часть из них одновременно являются ионными каналами; при связывании лиганда канал может открываться или закрываться. Такие белки называются ионотропные рецепторы. Другие рецепторы при связывании лиганда запускают какую-нибудь химическую реакцию на внутренней стороне мембраны (так что они являются одновременно ферментами или регуляторными белками); такие белки называются метаботропные рецепторы. Два главных типа метаботропных рецепторов - это рецепторы, сопряженные с G-белками , и рецепторы с протеинкиназной активностью . Рецепторы, сопряженные с G-белками - это семиспиральные (семь раз пересекающие мембрану в виде альфа-спиралей) белки. Рассмотрим механизм их действия на примере бета-2 адренорецепторов. Это - один из типов адренорецепторов, чувствительный в основном к андреналину (норадреналин действует на них в меньшей степени). Выявленная с помощью рентгеноструктурного анализа структура β2-адренорецептора, связанного с одним из искусственных лигандов. При действии адреналина на эти рецепторы гладкие мышцы бронхов и кровеносных сосудов скелетных мышц расслабляются, а в клетках печени усиливается распад гликогена (гликогенолиз), и образующаяся глюкоза выходит в кровь. С данным типом рецепторов связан Gs-белок. Этот белок, как и другие G-белки, состоит из трех субъединиц (полипептидных цепей) - α,β, и γ. Он "приделан" к внутренней стороне мембраны с помощью двух хвостов жирных кислот и свободно передвигается в плоскости мембраны. С α-субъединицей неактивного Gs-белка связана молекула ГДФ. Когда на бета-2 рецептор действует адреналин, рецептор активируется (меняет свою конформацию) и активирует Gs-белок. В результате α-субъединица отделяется от βγ-субъединицы и обменивает молекулу ГДФ на молекулу ГТФ. Такая активная α-субъединица соединяется с трансмембранным белком-ферментом аденилатциклазой, активируя его.
Активация Gs-белка и аденилатциклазы
Этот фермент осуществляет синтез циклического аденозинмонофосфата (цАМФ) из АТФ. цАМФ - один из универсальных вторичных посредников, используемых для передачи сигнала в клетках. В данном случае цАМФ активирует одну из протеинкиназ - протеинкиназу А (РКА). Этот фермент состоит из четырех субъединиц - двух регуляторных и двух каталитических. При связывании четырех молекул цАМФ регуляторные субъединицы отделяются от каталитических, которые при этом активируются. В клетках печени РКА фосфорилирует другую протеинкиназу - киназу фосфорилазы. Киназа фосфорилазы, в свою очередь, фосфорилирует фосфорилазу гликогена. Под действием фосфорилазы происходит фосфоролиз гликогена [84]. В результате образуется глюкоза,которая через белки-переносчики выходит из клеток печени в кровь и потребляется активно работающими при стрессе органами - в первую очередь скелетными мышцами.
Механизм активации и инактивации протеинкиназы А (РКА). PDE - фосфодиэстераза.
Зачем же нужна такая сложная и многоступенчатая система передачи сигнала? Во-первых, на первых этапах сигнал передается с внешней стороны мембраны (на которую действует гормон) на внутреннюю, где происходит синтез цАМФ. Хорошо растворимая, гидрофильная молекула цАМФ быстро диффундирует по всей клетке и передает сигнал во все ее участки. Во-вторых, на каждом этапе сигнализацию можно регулировать. Но главный смысл многоступенчатой передачи - в том, что на большинстве этапов происходит усиление сигнала. Так, за время активности рецептора он может активировать множество молекул G-белка. Каждый Gs-белок активирует одну молекулу аденилатциклазы, но аденилатциклаза синтезирует тысячи молекул цАМФ. 4 молекулы цАМФ активируют всего две каталитических субъединицы РКА, но те могут фосфорилировать множество молекул киназы фосфорилазы, и т.п. В результате такой системы многократного усиления под действием одной молекулы адреналина в клетке печени образуется около 10.000.000 молекул глюкозы. Когда стресс прошел, уровень секреции адреналина снижается. Из крови адреналин быстро выводится через почки и перестает действовать на рецепторы. После этого инактивируется Gs-белок. G-белки обладают ГТФ-азной активностью: α-субъединица расщепляет связанную с ней молекулу ГТФ до ГДФ (и фосфата), после чего связывается с βγ-субъединицей и переходит в неактивное состояние. таким образом, G-белок действует как автоматический "молекулярный выключатель". Уровень цАМФ в клетке понимается до исходного за счет того, что цАМФ расщепляет особый фермент - фосфодиэстераза. В результате каталитические субъединицы РКА объединяются с регуляторными и инактивируются. Инактивацию киназы фосфорилазы и фосфорилазы гликогена осуществляют ферменты протеинфосфатазы, отщепляющие от этих ферментов фосфатные группы. Так распад гликогена прекращается.
Электрические свойства мембраны. Генерация и проведение нервных импульсов
Потенциал покоя
Разность зарядов достигается за счёт разности концентраций ионов внутри и снаружи клетки. Внутри концентрация ионов калия высокая, а натрия - низкая, а снаружи - наоборот. Эта разность достигается за счёт работы Натрий-Калиевой АТФазы. В состоянии покоя нейрона калиевые каналы открыты, а натриевые закрыты. Катионы калия выходят в зону меньшей концентрации (из клетки) и создают избыточный положительный заряд снаружи клетки. Разность зарядов мембраны в состоянии покоя называется потенциалом покоя, а разность зарядов при любом состоянии аксона называется мембранным потенциалом. Когда мембранный потенциал (МП) клетки равен потенциалу покоя(ПП), натриевые каналы закрыты.
Потенциал действия. Генерация нервного импульса
Электрические свойства мембраны нейронов и других возбудимых клеток (например, мышечных) позволяют этим клеткам генерировать и передавать потенциалы действия (если их генерируют нейроны, то они называются также нервные импульсы). Потенциалы действия обычно возикают на дендритах или на теле нейрона, а затем передаются по аксону. Ключевую роль в генерации и передаче нервных импульсов играют свойства каналов наружной мембраны клетки. Как только МП станет достаточно отличаться от ПП, т.е. изменится до нужной величины - порога, происходит возбуждение. Здесь действует принцип "всё или ничего": если раздражающий фактор не способен изменить МП до порога, то возбуждения нет, а если способен, то возбуждение происходит. При возбуждении нейрона открываются натриевые каналы, и ионы натрия устремляются внутрь клетки, уменьшая отрицательный заряд внутренней стороны мембраны. Это уменьшение мембранного потенциала называется деполяризацией. Ионы натрия будут входить в клетку, пока внутренняя сторона мембраны не станет положительно заряженной относительно внешней стороны. Мембрана перезарядится (+ станет внутри, а - снаружи) После перезарядки мембраны натриевые каналы закрываются, и данный участок аксона определённое время не может возбуждаться. Этот период называется рефрактерностью. После закрытия натриевых каналов, ионы Калия устремляются наружу, уменьшая отрицательный заряд наружной стороны мембраны, пока внешняя сторона не станет положительно заряжена относительно внутренней. Мембрана перезарядится до исходного состояния. Этот этап называется реполяризацией. Все изменения мембранного потенциала от деполяризации до реполяризации называется потенциалом действия, или нервным импульсом. Схема движения нервного импульса по аксону:
+ и - - заряды мембраны
А- Внутренняя среда клетки
Б- Мембрана
В- Внешняя среда
Г- Направление движения Нервного импульса
Д- Возбуждённый участок
Нервный импульс может двигаться только вперёд, так как все задние участки аксона находятся в состоянии рефрактерности. На каждом участке нейрона нервный импульс возникает заново. На рисунке показана схема движения импульса без использования миелиновых оболочек . Скорость движения такого импульса достаточно невелика - приблизительно 3 м/сек. Для ускорения импульса используются w:глиальные клетки, и скорость импульса приблизительно равна 100 м/сек. Глиальные клетки окружают аксон по всей его длине и образуют оболочки - электроизоляторы - миелиновые оболочки, но оставляют небольшие участки нейрона - перехваты Ранье - открытыми. В центральной нервной системе миелиновую оболочку образуют олигодендроциты, а в периферической – леммоциты. Миелиновая оболочка образуется из отростка тела глиальной клетки, лишенного цитоплазмы. Многократно обмотанного вокруг аксона, то есть миелиновая оболочка состоит из многочисленных слоёв мембраны глиальной клетки. Нервный импульс не может двигаться по участкам, покрытыми миелиновыми оболочками, поэтому нервному импульсу приходится "перепрыгивать" от одного перехвата Ранье к другому. Далее нервный импульс достигает синапса и вызывает открытие кальциевых каналов. Ионы кальция входят внутрь клетки, и это приводит к слиянию пузырьков с нейромедиаторами с пресинаптической мембранной. Нейромедиаторы попадают в синаптичскую щель, и воздействуют на белки – рецепторы постсинаптической мембраны.
Схема строения плотного контакта
Плотные, или замыкающие контакты (zonula occludens) — участки, на которых мембраны двух соседних (эпителиальных) клеток тесно сближены и образуют барьер, практически непроницаемый для растворенных веществ. У беспозвоночных типичные замыкающие контакты не встречаются, им соответствуют по функциям септированные контакты. Плотные контакты — система ветвящихся полосок. Каждая полоска состоит из белков, пронизывающих мембраны соседних клеток и непосредственно соединяющихся друг с другом во внеклеточном пространстве. Хотя в образовании плотных контактов участвуют многочисленные белки, главные из них — клаудины и окклюдины. Различные периферические белки, расположенные на цитоплазматической стороне мембран, соединяют плотные контакты с актиновым цитоскелетом.
Плотные контакты выполняют три основные функции:
Механически соединяют клетки эпителия
Обеспечивают барьер для латеральной диффузии белков, благодаря чему сохраняется полярность клеток эпителия. На апикальной (смотрящей в просвет органа или на поверхность тела) поверхности локализованы одни белки, а на базолатеральной (нижне-боковой) — другие. Благодаря этому, например, клетки кишечного эпителия могут поглощать вещества путем активного транспорта или эндоцитоза из просвета кишки и выделять их в кровь (обычно путем пассивного транспорта или экзоцитоза). Для поглощения веществ нужны одни белки, а для их выделения в кровь — другие. Обеспечивают барьер на пути большинства веществ, из-за чего эти вещества транспортируются в организм через мембраны и через цитоплазму клеток. Это позволяет отчасти контролировать транспорт веществ (в большей степени, чем когда они просачиваются между клетками).
По степени «плотности» контактов эпителии lелятся на проницаемые и мало проницаемые. К первым относится, например. эпителий почечных капсул и проксимальных извитых трубочек, а ко вторым — эпителий дистальных извитых трубочек почек или капилляров мозга (где плотные контакты обеспечивают гематоэнцефалический барьер).
Десмосомы и гемидесмосомы
Основные белки, формирующие десмосому
Десмосома — один из типов межклеточных контактов, обеспечивающих прочное соединение клеток (как правило, эпителиальной или мышечной ткани) у животных. Функции z десмосом заключается главным образом в обеспечении механической связи между клетками.
Существуют 3 типа десмосом — точечные, опоясывающие и гемидесмосомы. Точечная десмосома собой небольшую площадку (диаметром до 0,5 мкм), соединяющую мембраны двух соседних клеток. Количество точечных десмосом на одной клетке может достигать 2000. Десмосомы образуются между клетками тех тканей, которые могут подвергаться трению, растяжению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют в цитоплазме сеть, обладающий большой прочностью на разрыв. Через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть, охватывающую всю ткань. Десмосома состоит из белков клеточной адгезии из семейства кадгеринов и соединительных (адапторных) белков, которые соединяют их с промежуточными филаментами. Белки клеточной адгезии, формирующие десмосомы — десмоглеин и десмоколлин. Как и другие кадгерины, эти трансмембранные белки имеют по пять внеклеточных доменов и являются кальцийсвязывающими. Они обеспечивают гомофильное соединение клеток — между собой соединяются две одинаковые по строению молекулы белка. Внутриклеточный белок десмоплакин (при участии еще двух белков, плакофиллина и плакоглобина) соединяет внутриклеточные домены десмоглеина с промежуточными филаментами. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы — десминовые, и т. п. Если контакты похожего строения образуются между клетками и внеклеточным матриксом, то они называются гемидесмосомами, или полудесмосомами. Хотя по структуре они напоминают десмосомы и тоже содержат промежуточные филаменты, они образованы другими белками. Основные трансмембранные белки гемидесмосом — интегрины и коллаген XVII. С промежуточными филаментами они соединяются при участии дистонина и плектина. Основной белок межклеточного матрикса, к которому клетки присоединяются с помощью гемидесмосом — ламинин.
Медицинское значение
С нарушением функции десмосом связаны кожные болезни, которые объединены под названием «пузырчатка» (pemphigus). Две её наиболее распространенные формы — pemphigus vulgaris (вульгарная пузырчатка) и pemphigus foliaceus (пластинчатая пузырчатка). Обычно они имеют аутоиммунную природу, хотя сходные патологии могут быть и наследственными. При вульгарной пузырчатке антитела атакуют белок десмоглеин-3, который присутствует во всех слоях эпителия. При пластинчатой пузырчатке образуются аутоантитела против белка десмоглеин-1, который экспрессируется только в верхних слоях эпидермиса кожи. У больных образуются пузыри, так как слои эпидермиса разрываются, часть его клеток гибнет, а в образующиеся полости поступает межклеточная жидкость. При вульгарной пузырчатке пузыри образуются не только на коже, но на других слизистых (в основном во рту). Эта болезнь протекает более тяжело и может закончиться смертью. Развивается она обычно в возрасте 40-60 лет. При пластинчатой пузырчатке поражения захватывают только кожу, которая отслаивается в виде пластинок. При нарушении функции гемидесмосом развивается буллёзный эпидермолиз (врожденная, буллёзная пузырчатка). При малейшем механическом воздействии эпидермис кожи отстаёт от базальной пластинки, под ним образуются пузыри с серозным или геморрагическим содержимым. Одна из причин этого заболевания — мутации гена коллагена XVII. Данный вариант заболевания наследуется по аутосомно-рецессивному типу.
Высокопроницаемые (щелевые) контакты
Щелевое соединение
Щелевое соединение, щелевой контакт — способ соединения клеток в организме с помощью белковых каналов (коннексонов). Через щелевые контакты могут непосредственно передаваться от клетки к клетке электрические сигналы (потенциалы действия), а также малые молекулы (с молекулярной массой примерно до 1.000 Д). Этим щелевые контакты отличаются от плазмодесм, через которые могут транспортироваться макромолекулы и даже органоиды. Структурную основу щелевого соединения составляют коннексоны — каналы, образуемые шестью белками-коннексинами. В нервной системе щелевое соединение между нейронами встречается в так называемых электрических синапсах. Отдельные коннексоны обычно сосредоточены на ограниченных по площади участках мембран — нексусах, или бляшках (англ. plaque) диаметром 0,5-1 мкм. В области нексуса мембраны соседних клеток сближены, расстояние между ними составляет 2-4 нм.
Белки щелевых контактов
У позвоночных основу щелевых контактов составляют коннексины — первое из описанных семейств белков щелевых контактов. В геноме человека идентифицирован 21 ген щелевых контактов, в геноме мыши — 20 генов. У беспозвоночных имеется другое семейство белков щелевых контактов, сходных с коннексинами по структуре и функциям. но негомологичных им (имеющих несходную первичную структуру) — иннексины. В геноме Caenorhabditis elegans найдено 25 генов иннексинов, в геноме Drosophila melanogaster — 8. Позднее выяснилось, что у позвоночных, кроме коннексинов, имеются также белки, гомологичные иннексинам. Эти белки, открытые группой российских ученых под руководством Ю. В. Панчина, получили название паннексины. В геноме человека и мыши к настоящему времени идентифицированы 3 гена паннексинов. У кишечнополостных и иглокожих есть щелевые контакты, но нет генов ни одного из вышеназванных семейств. Это означает, что существуют ещё не открытые семейства белков щелевых контактов.
Другие типы контактов
Адгезионные (адгезивные) контакты образуются между соседними клетками (как правило, 'пиелиальными) или между клетками и межклеточным веществом (фокальные контакты, пятна адгезии). В первом случае трансмембранные белки, обеспечивающие контакт клеток, относятся к семейству кадгеринов; присоединение клетки к межклеточному веществу обеспечивают интегрины. Этим адгезивные контакты сходны с десмосомами и гемидесмосомами. Однако внутри клетки белки этих контактов через различные линкерные белки связываются не с промежуточными фиалментами (как в случае десмосом и гемидесмосом), а с актиновыми микрофиламентами.
Цитоскелет и клеточная подвижность
Цитоскелет- система внутриклеточных белковых нитей и трубочек. Цитоскелет участвует в поддержании формы клеток и обеспечивает все формы клеточной подвижности эукариот. Ползание амебы и плавание инфузории, сокращение мышц человека и продвижение растущего аксона к мышце-мишени, расхождение хромосом при митозе и перемещение секреторных пузырьков к наружной мембране - всё эторезультат работы цитоскелета. Таким образом, он выполняет функции не только "клеточных костей", но и "клеточных мышц". До недавнего времени считалось, что цитосклет есть только у эукариот. Но сейчас известно, что и в клетках прокариот (по крайней мере, некоторых) тоже присутстуют белки, образующие цитоскелет.
Белки «цитоскелета» прокариот
Долгое время считалось, что цитоскелетом обладают только эукариоты. Однако с выходом в 2001 году статьи Jones и соавт. (PMID: 11290328), описывающей роль бактериальных гомологов актина в клетках Bacillus subtilis, начался период активного изучения элементов бактериального цитоскелета. К настоящему времени найдены бактериальные гомологи всех трех типов элементов цитоскелета эукариот — тубулина, актина и промежуточных филаментов (Shih Y.-L., Rothfield L. The Bacterial Cytoskeleton. // Microbiology And Molecular Biology Reviews. — 2006. — V. 70., No. 3 — pp. 729—754. PMID: 16959967). Также было установлено, что как минимум одна группа белков бактериального цитоскелета, MinD/ParA, не имеет эукариотических аналогов.
Бактериальные гомологи актина
К наиболее изученным актиноподобным компонентам цитоскелета относятся MreB, ParM и MamK. Белки MreB и его гомологи являются актиноподобными компонентами цитоскелета бактерий, играющими важную роль в поддержании формы клетки, сегрегации хромосом и организации мембранных структур. Некоторые виды бактерий, такие как Escherichia coli, имеют только один белок MreB, тогда как другие могут иметь 2 и более MreB-подобных белков. Примером последних служит бактерия Bacillus subtilis, у которой были обнаружены белки MreB, Mbl (MreB-like) и MreBH (MreB homolog). В геномах E. coli и B. subtilis ген, отвечающий за синтез MreB, находится в одном опероне с генами белков MreC и MreD. Мутации, подавляющие экспрессию данного оперона, приводят к образованию клеток сферической формы с пониженной жизнеспособностью. Субъединицы белка MreB образуют филаменты, обвивающие палочковидную бактериальную клетку. Они располагаются на внутренней поверхности цитоплазматической мембраны. Филаменты, образуемые MreB, динамичны, постоянно претерпевают полимеризацию и деполимеризацию. Непосредственно перед делением клетки MreB концентрируется в области, в которой будет формироваться перетяжка. Считается, что функцией MreB также является координация синтеза муреина — полимера клеточной стенки. Гены, отвечающие за синтез гомологов MreB, были обнаружены только у палочковидных бактерий и не были найдены у кокков. Белок ParM присутствует в клетках, содержащих малокопийные плазмиды. Его функция заключается в разведении плазмид по полюсам клетки. При этом субъединицы белка формируют филаменты, вытянутые вдоль большой оси палочковидной клетки. Филамент по своей структуре представляет собой двойную спираль. Рост филаментов, образуемых ParM, возможен с обоих концов, в отличие от актиновых филаментов, растущих только на ±полюсе. MamK — это актинподобный белок Magnetospirillum magneticum, отвечающий за правильное расположение магнитосом. Магнитосомы представляют собой впячивания цитоплазматической мембраны, окружающие частички железа. Филамент MamK выполняет роль направляющей, вдоль которой, одна за другой, располагаются магнитосомы. В отсутствие белка MamK магнитосомы располагаются беспорядочно по поверхности клетки.
Гомологи тубулина
В настоящее время у прокариот найдены 2 гомолога тубулина: FtsZ и BtubA/B. Как и эукариотический тубулин, эти белки обладают ГТФазной активностью. Белок FtsZ чрезвычайно важен для клеточного деления бактерий, он найден практически у всех эубактерий и архей. Также гомологи этого белка были обнаружены в пластидах эукариот, что является еще одним подтверждением их симбиотического происхождения. FtsZ формирует так называемое Z-кольцо, выполняющее роль каркаса для дополнительных белков клеточного деления. Вместе они представляют собой структуру, ответственную за образование перетяжки (септы). В отличие от широко распространенного FtsZ, эти белки обнаружены только у бактерий рода Prosthecobacter. Они более близки к тубулину по своему строению, чем FtsZ.
Кресцентин, гомолог белков промежуточных филаментов
Кресцентин был найден в клетках Caulobacter crescentus. Его функцией является придание клеткам C. crescentus формы вибриона. В случае отсутствия экспрессии гена кресцентина клетки C. crescentus приобретают форму палочки. Интересно, что клетки двойных мутантов, кресцентин− и MreB−, имеют сферическую форму. Эти белки не имеют гомологов среди эукариот. MinD отвечает за положение сайта деления у бактерий и пластид. ParA участвует в разделении ДНК по дочерним клеткам.
Основные компоненты цитоскелета эукариот
Основные элементы цитоскелета эукариот - микротрубочки, микрофиламенты и промежуточные филаменты. Микротрубочки - белковые трубочки диаметром около 25 нм. Они состоят из глобулярного белка тубулина. Микрофиламенты похожи на две перекрученные нити бусинок. Они имеют диаметр около 7 нм и состоят из глобулярного белка актина. Промежуточные филаменты похожи на многожильный кабель диаметром около 10 нм. Они состоят в разных клетках из разных фибриллярных белков; например, в клетках эпителиальных тканей животных это белок кератин. Микротрубочки и микрофиламенты есть во всех клетках эукариот. Промежуточные филаменты в цитоплазме есть не у всех эукариот, а только у некоторых групп животных. причем не во всех клетках. В ядре промежуточные филаменты распространены более широко: видимо, они есть у всех животных и растений.
Основные типы клеточной подвижности эукариот — амебоидное движение, ресничное движение и мышечное сокращение[править]
Микротрубочки, их строение и функции
Строение микротрубочки.
По её периметру укладывается 13 молекул тубулина
Микротрубочки - трубочки диаметром около 24-25 нм, состоящие из белка тубулина. Микротрубочки есть во всех клетках эукариот и могут собираться в цитоплазме, а у многих эукариот и внутри ядра.
Микротрубочки:
Участвуют в поддержании формы клеток
Влияют на взаимное расположение органелл (например, ЭПС и аппарата Гольджи)
Обеспечивают транспорт веществ (по их поверхности, как по рельсам, мс помощью двигательных белков кинезинов и динеинов могут передвигаться мембранные пузырьки с грузом и макромолекулы)
Составляют основу жгутиков и ресничек эукариот, при участии динеинов обеспечивают ресничное и жгутиковое движение
Составляют основу центриолей, которые во многих клетках эукариот выполняют роль ЦОМТ - центра организации микротрубочек
Образуют веретено деления и обеспечивают расхождение хромосом к полюсам клетки в ходе ее деления
Строение молекул тубулина. Структура микротрубочек
Тубулин — глобулярный белок. В клетках эукариот есть несколько слегка различающихся генов-ортологов, которые кодируют три разных формы тубулина — α-тубулин, β-тубулин и γ-тубулин. У каждого из этих белков выделяют три домена. Одна молекула α-тубулина и одна молекула β-тубулина в цитоплазме клеток объединяются в димер (изображен на рисунки). В составе такого димера к каждой молекуле тубулина присоединено по одной молекуле ГТФ. На самом деле каждую из форм тубулина кодирует не один ген, а около десятка, так что каждая форма существует в виде множества подтипов. Они могут быть специфичны для определенных тканей. Например, тубулин III-β встречается только в нейронах. Кроме того, по одному гену кодируют еще две формы тубулина — δ- и ε-тубулин, которые, как и γ-тубулин, встречаются в основном в центриолях.
Сборка и разборка микротрубочек. Динамическая нестабильность
Новые молекулы тубулина могут прикрепляться как к ±, так и к --концу микротрубочки, но легче (при более низкой концентрации) присоединяются к + -концу (и легче отделяются от --конца). Тубулин способен связываться в растворе с молекулами ГТФ. Рост микротрубочек осуществляется только за счет присоединения димеров тубулина, в которых обе субъединицы связаны с молекулами ГТФ. В стенках микротрубочек происходит гидролиз ГТФ, связанной с β-субъединицей, до ГДФ (связанная с α-субъединицей ГТФ стабильна). Связанная с ГДФ форма тубулина легче отделяется от микротрубочек, что определяет динамическую нестабильность микротрубочек — при определенных условиях они быстро распадаются почти полностью. Микротрубочка распадается, когда расщепление ГТФ происходит быстрее, чем присоединение новых димеров. Тогда защитная "шапочка" (кэп) на +-конце из димеров, связанных с ГТФ, разрушается, и после эого быстро отваливаются от микротрубочки димеры, связанные с ГДФ.
Транспортная роль микротрубочек. Строение и функции кинезинов и динеинов
По поверхности микротрубочек, как по рельсам, могут транспортироваться мембранные пузырьки (везикулы) с грузом или макромолекулы. Их перемещение осуществляют две группы моторных белков - кинезины и динеины. Кинезины перемещаются по микротрубочке от --конца к +-концу, то есть обеспечивают транспорт к периферии клеток. Динеины двигаются в противоположном направлении - от +-конца микротрубочки к --концу, то есть обычно перемещают грузы к центру клетки. Транспорт к периферии клетки часто называют антероградным транспортом, транпорт к центру - ретроградным (особенно эти термины применимы к движению по отросткам клеток - например, аксонам или дендритам. Одно из семейств кинезинов (кинезины-14, в том числе NCD дрозофилы, KAR3 почкующихся дрожжей и ATK5 арабидопсиса, двигаются по микротрубочкам от +-конца к --концу.
Строение и функции кинезинов и динеинов
Реснички и жгутики — органеллы, которые есть у многих групп эукариот. Это тонкие (диаметром 0,1-0,6 мкм) волосковидные выросты на поверхности клетки. Длина их составляет от 3-15 мкм до 2 мм (реснички гребных пластинок гребневиков). Жгутики и реснички всех эукариот имеют сходное строение, поэтому иногда их обозначают общим термином ундулиподии. Это сходство — одно из свидетельств единого (монофилетического) происхождения эукариот. Ундулиподии есть у большинства групп протистов, у споровых и некоторых голосеменных растений раст и практически у всех животных. Настоящие грибы (Eumycota) лишены жгутиков и ресничек. Различие между жгутиками и ресничками на самом деле заключается в характере их движения: реснички совершают удары в одной плоскости, а жгутик вращается (одновременно по нему может пробегать волна). Но в зоологии принято называть жгутиковыми любые клетки, у которых есть один подвижный жгутик (или ресничка). При наличии многочисленных ресничек клетки называют ресничными. У многих беспозвоночных животных ими покрыта вся поверхность тела (ресничные черви, личинки кишечнополостных и губок) или отдельные его участки (например, жабры у полихет и двустворчатых моллюсков, подошва ноги у брюхоногих моллюсков). У коловраток из специализированных ресничек состоит коловращательный аппарат. У многих беспозвоночных (кишечнополостные, гребневики, турбеллярии и др.) реснички также имеются на клетках кишечного эпителия. У позвоночных (в том числе человека) клетки с подвижными ресничками также есть во многих органах. У человека ресничным эпителием выстланы дыхательные пути, евстахиевы трубы, семявыносящие канальцы, желудочки мозга и спинномозговой (центральный) канал. Видоизмененные реснички служат световоспринимающим аппаратом фоторецепторов сетчатки глаза и воспринимающим запахи аппаратом хеморецепторов обонятельного эпителия.
Жгутики и реснички выполняют разнообразные функции
Подвижные реснички и жгутики либо служат для движения, либо создают токи жидкости. Эти токи могут приносить пищу или кислород из внешней среды или служить для транспорта растворенных веществ внутри организма. Неподвижные жгутики и реснички (часто сильно видоизмененные) служат рецепторами у самых разных групп организмов.
Микрофиламенты, их строение и функции
Микрофиламенты — элементы цитоскелета, свойственные всем клеткам эукариот. Они состоят из белка актина и имеют диаметр 6-7 нм. С актином взаимодействуют многие другие «вспомогательные» белки. Актиновые филаменты могут ветвиться и соединяться поперечными сшивками, образуя трехмерные сети. Обычно эта сеть более густая под наружной мембраной, во внешнем слое цитоплазмы, который называется кортекс. Микрофиламенты участвуют в поддержании формы клетки и формировании выростов на её поверхности — микроворсинок и псевдоподий (ложноножек). Взаимодействуя с миозином, микрофиламенты обеспечивают амебоидное и мышечное движение, а также деление клетки «перетяжкой», характерное для животных. С помощью цитоплазматических миозинов по микрофиламентам могут двигаться пузырьки с грузом; т.о., они участвуют в везикулярном транспорте. С помощью вспомогательных белков микрофиламенты могут присоединяться изнутри к мембране клетки, образуя адгезивные контакты. Эти контакты участвуют в амебоидном движении многих клеток (в том числе внутри многоклеточного организма). С их помощью клетки прикрепляются к межклеточному веществу при ползании. Они могут выполнять и сигнальную функцию, меняя поведение клеток в зависимости от состава окружающей среды.
Строение молекул актина
G-актин. Показаны связанные с ним молекула АТФ и двухвалентный катион
F-актин; модель актинового микрофиламента, показаны 13 субъединиц
Мышечное сокращение. Строение и сокращение поперечнополосатых мышц
Основные сократимые элементы скелетных мышц - это экстрафузальные мышечные волокна. (Видоизмененные интрафузальные волокна – мышечные веретена - служат рецепторами растяжения.) Это гигантские многоядерные клетки, имеющие форму цилиндра с заострёнными концами. Длина их в разных мышцах обычно составляет от 1 до 40 мм, а толщина 50-100 мкм. Число ядер может достигать нескольких сотен; располагаются они неглубоко под плазматической мембраной, которая носит специальное название – сарколемма. Сарколемма имеет глубокие впячивания в цитоплазму – Т-трубочки. При сокращении мышца тратит очень много энергии, поэтому в цитоплазме находится большое количество митохондрий, обеспечивающих функционирование основных сократимых элементов мышцы – миофибрилл. Также в цитоплазме находится специализированный ЭПР. В процессе эмбрионального развития мышечные волокна возникают путем слияния одноядерных клеток-предшественников — миобластов. Часть миобластов дифференцируются в мелкие, с малым количеством цитоплазмы клетки-спутницы. Эти клетки при повреждении мышцы могут начать делиться и сливаться, обеспечивая регенерацию мышечных волокон. Две трети объёма мышечного волокна занимают миофибриллы, которые, в свою очередь, состоят из нескольких саркомеров. Поперек миофибрилл находятся перегородки, являющиеся границами саркомеров. Эти перегородки называются Z-дисками. Z-диски состоят из альфа-актинина (актин-связывающего белка), винкулина и интегрина. От Z-дисков отходят нити - тонкие филаменты, между ними расположены более толстые пучки - толстые филаменты. Места перекрывания тонких и толстых филаментов под световым микроскопом выглядят, как более темные полосы. Из-за этого мышца получила название поперечно-полосатой. Когда мышца сокращается, длина толстых и тонких филаментов не меняется. Мышца сокращается за счет того, что филаменты скользят по поверхности друг друга. Толстые филаменты состоят из белка миозина. Молекулы миозина симметричны, они состоят из двух половинок, каждая из которых имеет "головку" и "хвост". В толстом филаменте молекулы миозина находятся "хвостом" к "хвосту", а "головки" торчат по краям наружу. Толстые филаменты также соединяются с Z-дисками, но не напрямую, а с помощью специального белка титина. Тонкие филаменты состоят из нескольких белков: актина, тропонина и тропомиозина. Последние два образуют тропонин-тропомиозиновый комплекс. Актин - глобулярный белок, его молекулы имеют форму шариков. Из-за этого тонкий филамент напоминает две перекрученные цепочки бус, в которых каждый шарик– это молекула актина.
Саркоплазматический ретикулум (СР) - специализированный эндоплазматический ретикулум (ЭПР) мышечных клеток поперечнополосатых мышц. По структуре напоминает гладкий ЭПР. СР расположен в непосредственной близости от миофибрилл. Его структуры подразделяются на терминальные цистерны, которые охватывают миофибриллы полукольцом, и продольные трубочки, кторые соединяют соседние терминальные цистерны. К терминальным цистернам СР примыкают Т-трубочки - глубокие впячивания наружной мембраны. Число Т-трубочек примерно соответствует числу саркомеров. СР служит депо ионов кальция. Концентрация ионов кальция в СР может достигать 10−3 моль, в то время как в цитозоле составляет порядка 10−7 моль (в состоянии покоя).
Молекулярный механизм скольжения филаментов
У миозина есть два состояния: с вытянутой "головкой" и с согнутой "головкой". Состояние зависит от того, какое вещество находится в его активном центре: АТФ, АДФ + фосфат, просто АДФ или вообще ничего. Если в активном центра находится АТФ или ничего нет, то "головка" будет изогнута. Если же там АДФ + фосфат или АДФ, головка будет вытянута. Связан миозин с актином или нет, тоже зависит от вещества, находящегося в активном центре миозина. Если в нем находится АТФ или АДФ + фосфат, то миозин не будет взаимодействовать с актином. Если там АДФ или ничего, то миозин связывается с актином. Итак, если в активный центр миозина поступил АТФ, то "головка" белка изогнута, а с актином он не связан. Затем миозин расщепляет АТФ, с образованием АДФ + фосфат. Из-за этого "головка" миозина выпрямляется, но с актином белок еще не связан. После этого из активного центра уходит фосфат. При этом "головка" миозина по-прежнему выпрямлена, и миозин связывается с актином. Потом из активного центра уходит и АДФ. Поскольку в нем ничего не осталось, головка миозина изгибается, не отрываясь при этом от актина. В результате миозин будет подтягивать весь тонкий филамент. Наконец, активный центр миозина связывает еще одну молекулу АТФ, миозин отсоединяется от актина, весь цикл повторяется, и тонкий филамент подтягивается еще на один шаг.
Регуляция мышечного сокращения
Нейромедиатор ацетилхолин воздействует на ацетилхолиновые рецепторы - гетероолигомерные комплексы, состоящие из 5 субъединиц (2α, β, γ, δ). Трансмембранная часть рецептора образует ионный канал, стенки которого сформированы сегментами всех пяти субъединиц. 2 молекулы ацетилхолина связываются с α-субъединицами рецептора, из-за чего рецептор меняет свою конформацию, что приводит к открытию Na+/K+-каналов примерно на 1 миллисекунду, ионы натрия входят в клетку, ионы калия выходят из клетки - происходит деполяризация наружной мембраны мышечной клетки. Потенциал действия мышцы распространяется по сарколемме и внутрь Т-трубочек. На мембране Т-трубочек открываются потенциалзависимые кальциевые ионные каналы L-типа (дигидропиридиновые рецепторы), связанные с кальциевыми ионными каналами СР (рианодиновыми рецепторами). В результате ионы кальция поступают из внеклеточной среды и СР в межфибриллярное пространство. Обратно ионы кальция попадают в СР с помощью мембранных кальциевых насосов — Ca2+-АТФазы. Ранее полагали, что между кальциевыми каналами и мембраной Т-трубочек имеется домен белка, который обеспечивает механическое сопряжение деполяризации с открыванием канала. Однако теперь преобладает точка зрения, согласно которой при деполяризации открываются кальциевые каналы на Т-трубочке, первые порции ионов кальция входят в клетку извне, связываются с цитоплазматическим доменом кальциевых ионных каналов СР и вызывают их открывание. На поверхности тонкого филамента находится тропонин-тропомиозиновый комплекс, который состоит из соединенных белков тропонина и тропомиозина. Тропомиозин механически мешает миозину взаимодействовать с актином. Тропонин же при наличии Ca2+ связывается с этим ионом, изменяет свою конформацию и смещается в сторону. Вместе с ним сдвигается и тропомиозин, т.к. эти белки очень тесно связаны. Сместившись, тропомиозин больше не мешает связи между миозином с актином. Когда концентрация ионов кальция в саркоплазме возрастет до 10 мкМ/л, эти ионы могут связаться с С-субъединицей тропонина. В результате тропонин-тропомиозиновый комплекс смещается из-за изменения конформации тропонина С, и на актиновых микрофиламентах открываются места связывания для "головок" миозина. Нервно-мышечный синапс — эффекторное нервное окончание на скелетном мышечном волокне. Нервный отросток, проходя к сарколемме, утрачивает миелиновую оболочку и образует с ней систему складок, похожих на глубокие карманы. Пресинаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, зато тут есть скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором ацетилхолином. Некоторые вещества могут влиять на процесс выделения медиатора в синаптическую щель: карбахолин усиливает выделение ацетилхолина на уровне пресинаптических окончаний, а ботулотоксин препятствует высвобождению медиатора. На постсинаптической мембране находятся чувствительные к нему холинорецепторы, сложные белковые молекулы. На пресинаптической мембране их нет, поэтому обратная передача сигнала невозможна.
1. Пресинаптическое окончание
2. Сарколемма
3. Синаптический пузырек
4. Никотиновый ацетилхолиновый рецептор
5. Митохондрия
При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. Открыты два механизма высвобождения нейромедиатора: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы (ацетилхолин), а крупные остаются в везикуле. Второй механизм предположительно быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке. Слияние везикул с мембраной обеспечивают белки группы v-SNARE. У белков этой группы SNARE-домен (около 60 аминокислот) отвечает за образование обратимой, но прочной четырёхспиральной сцепки. Такой метастабильный транс-SNARE комплекс включает синтаксин 1 и SNAP-25, находящиеся на клеточной мембране, и синаптобревин на поверхности доставляемой пресинаптической везикулы. Синтаксин и синаптобревин связаны с мембраной С-коцевым фрагментом и предоставляют по одной альфа-спирали в четырёхспиральную сцепку комплекса. SNAP-25 заякорен на мембране за счёт пальмитоильных ацильных цепей и обеспечивает две оставшиеся альфа-спирали. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны. Холинорецептор нервно-мышечных синапсов включает 5 белковых субъединиц (α, α, β, γ, δ), окружающих ионный (натриевый) канал и проходящих через всю толщу липидной мембраны. Две молекулы ацетилхолина взаимодействуют с двумя α-субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны. Ацетилхолин действует недолго, потому что разрушается ацетилхолинэстеразой(В нервно-мышечных синапсах - ее т-версией). Она катализирует гидролиз нейромедиатора ацетилхолина до холина и остатка уксусной кислоты. т-ацетилхолинэстераза представляет из себя асимметричную белковую молекулу с "хвостом" из коллагеновой субъединицы, которая прикрепляет его к постсинаптической мембране.
Из-за снижения концентрации нейромедиатора закрываются Na+-каналы на мембране мышечной клетки, мембрана реполяризуется. После реполяризации мембраны ионы кальция выкачиваются из цитоплазмы в СР, и за время порядка 30 мс их концентрация возвращается к исходной. Этот процесс обеспечивается белком — кальциевым насосом (Са-АТФаза, Са2+-АТФаза), который в больших количествах содержится в мембране СР. Са-АТФаза активируется при связывании двух ионов кальция с цитоплазматической стороны, так что её активация происходит при повышении концентрации ионов кальция в цитоплазме.
Промежуточные филаменты, их строение и функции
Промежуточные филаменты (ПФ) — элементы цитоскелета, состоящие из сходных по строению и функциям белков. Своё название они получили из-за того, что их диаметр — около 10 нм — промежуточный между диаметром микрофиламентов и микротрубочек. К белкам ПФ относятся ламины, из которых состоит внутренняя выстилка ядерной оболочки, и цитоплазматические белки, различающиеся в разных клетках. Ламины есть у большинства эукариот, цитоплазматические ПФ — только у некоторых животных, причем не во всех тканях. Так, ламины есть у нематод, моллюсков и позвоночных, но не найдены у членистоногих и иглокожих.
Сборка и разборка промежуточных филаментов
Сборка промежуточного филамента из молекул кератина
Две молекулы кератина (или иного белка ПФ), имеющие вытянутую форму, закручиваются друг вокруг друга, образуя гомо- или гетеродимер. При этом они направлены "голова к голове " (NH2-концы обеиз молекул смотрят в одну и ту же сторону). Затем два таких димера объединяются в тетрамер «головой к хвосту». Из таких тетрамеров собираются протофиламенты, а затем 8 протофиламентов объединяются в ПФ диаметром около 10 нм. Тетрамеры удерживаются вместе в основном за счет гидрофильно-гидрофобных взаимодействий. Между отдельными ПФ образуются дисульфидные мостики; это придаёт сетям из ПФ особую прочность и делают их малорастворимыми. Сети из ПФ сохраняют целостность даже после гибели клетки (из таких заполненных кератином мертвых клеток состоит верхний слой кожи, волосы, ногти и другие роговые структуры у наземных позвоночных). Мономеры и димеры белков ПФ, в отличие от димеров тубулина и мономеров актина, не связывают трифосфатнуклеотиды. Регуляция сборки и разборки ПФ изучена плохо. Видимо, в некоторых случаях их быстрая разборка происходит за счет фосфорилирования (как и распад ядерной оболочки из ламинов). Ядерные ламины поддерживают форму ядра, обеспечивают целостность ядерной оболочки и прикрепление хромосом
Строение ядерной оболочки.
Ядерная ламина — извилистые зеленые линии. Ядерная ламина прилегает к внутренней поверхности внутренней ядерной мембраны (INM) и помогает поддерживать ядро в стабильном состоянии, участвует в организации хроматина, связывает ядерные поры. В профазе митоза или мейоза у многих организмов белки ядерной ламины фосфорилируются, и это приводит к распаду ядерной оболочки. Также ядерная ламина взаимодействует с белками ядерной оболочки. Число известных белков, взаимодействующих с ламиной, постоянно растёт благодаря новым открытиям. Белки отмечены пурпурным цветом. Среди белков, связывающихся с ядерной ламиной — несприн, эмерин, LAP1, LAP2, рецептор ламина B (LBR) и MAN1. К ламине присоединяются факторы транскрипции, такие как retinoblastoma transcriptional regulator (RB), germ cell-less (GCL), sterol response element binding protein (SREBP1), FOS and MOK2. Barrier to autointegration factor (BAF) — связанный с хроматином белок, который также присоединяется к ламинам и некоторым из вышеупомянутых белков. Белок гетерохроматина-1 (HP1) связывается с хроматином и LBR. Мутации генов, кодирующих ламины, вызывают редкие расстройства, объединяемые в группу ламинопатий. Мутация гена LMNA, кодирующего ламин A, вызывает синдром прогерии Хатчинсона-Гилфорда — исключительно редкое заболевание, вызывающее по неизвестным причинам ускоренное старение: большинство пациентов не доживает до 13 лет.
Состав промежуточных филаментов различается в разных тканях
В эпителиальных тканях ПФ состоят из различных кератинов. В клетках и тканях мезодермального происхождения (например. в фибробластах) ПФ состоят из белка виментина. В мышечных клетках присутствуют ПФ, образованные десмином. В большинстве типов нервных клеток присутствуют белки нейрофиламентов.
Промежуточные филаменты эпителиальных клеток состоят из множества разных кератинов
В геноме человека содержится несколько десятков генов белков-кератинов. В эпителиальных клетках обычно одновременно экспрессируются несколько таких генов.
Промежуточные филаменты эпителиальных клеток обеспечивают механическую прочность эпителиальных пластов
ПФ участвуют в образовании межклеточных контактов эпителиальных клеток — десмосом и гемидесмосом.
Промежуточные филаменты других тканей также важны для их функционирования
Взаимодействие различных систем цитоскелета в клетках эукариот
Компартменты эукариотической клетки:
Одномембранные
Эндоплазматический ретикулум
Аппарат Гольджи
Эндосомы и лизосомы
Пероксисомы
Роль компартментализации в клетках эукариот
Компартмент - участок клетки, ограниченный двойной мембраной, в котором проходят специфические для данного компартмента биохимические процессы. Таким образом, не каждый органоид является компартментом, но компартмент - это органоид.
Компартментализация - дань специализации различных отделов одной клетки. Её смысл состоит в увеличении эффективности биохимических процессов.
Единая мембранная система клетки
Эндоплазматическая сеть, ее функции
Эндоплазматический ретикулум (ЭПР) или эндоплазматическая сеть (ЭПС) - клеточный компартмент, образующий сложную сеть из уплощённых мембранных мешочков или трубочек, называемых цистернами. Эта структура открыта в 1945 году американским учёным Кейтом Портером посредством электронной микроскопии. [9]
Строение ЭПР
Диаметр просвета (или люмена) ЭПР варьирует от 20 нм до нескольких мкм в зависимости от функциональной активности клетки. ЭПР подразделяется на гладкий (англ. "smooth"), или агранулярный, и шероховатый (англ. "rough"), или гранулярный. ГЭПР отличается наличием сидячих рибосом на своих стенках; они и обсулавливают различия в функциях Г и АЭПР. Может быть представлен в цитоплазме или разрозненными, относительно редкими цистернами, или в виде локальных скоплений мембран (цитоплазма с такими скоплениями называется эргастоплазмой). Первый тип характерен для клеток с низкой метаболической активностью, второй - клеткам, активно секретирующим белки (например, клеткам печени, железистым клеткам растений).
Функции ЭПР
Агранулярный ЭПР выполняет следующие функции:
Синтез и транспорт липидов и стероидов
Накопление и преобразование углеводов
Нейтрализация ядов
Депонирование Ca2+
Главной функцией гранулярного ЭПР является синтез белков, причём на ГЭПР синтезируются белки, предназначенные для секреции, отсюда не менее важна функция транспорта продуктов синтеза. Оба этих процесса могут проходить как совместно, так и раздельно. Нужные же клетке белки синтезируются на рибосомах, свободно плавающих в цитоплазме.
Аппарат Гольджи, его функции
Из-за достаточно большого размера аппарат Гольджи (АГ) был обнаружен одним из первых среди органелл клетки. АГ был открыт в 1897 году итальянским врачом Камилло Гольджи в ходе его исследований нервной системы. После первого наблюдения он назвал АГ внутренним ретикулярным аппаратом, но вскоре органелла была переименована — названа в честь первооткрывателя. Однако некоторые сомневались в открытии новой органеллы, утверждая, что обнаруженная структура была просто оптической иллюзией, созданной техникой, используемой Гольджи. С развитием современных микроскопов в XX веке открытие было подтверждено. Аппарат Гольджи найден и в растительных, и в животных клетках. Аппарат Гольджи хорошо развит у клеток, выполняющих секреторные функции (например, у клеток поджелудочной железы). АГ – одномембранный органоид. Он состоит из стопок мембранных структур, называемых цистернами. Кроме цистерн, в АГ присутствует множество мембранных пузырьков — везикул.
У аппарата Гольджи есть несколько важных функций.
1. Аппарат Гольджи участвует в изменении, сортировке и упаковке синтезируемых клеткой макромолекул для секреции ( экзоцитоза) или использования внутри клетки. При сортировке белков аппарат Гольджи модифицирует их. Для того, чтобы опознать и направить по нужному адресу белок, к нему в аппарате Гольджи прикрепляется специальная углеводная метка. Например, метка белка, который должен быть доставлен в лизосому – манноза-6-фосфат.
2. Аппарат Гольджи участвует в транспорте липидов и создании лизосом. Аппарат Гольджи присутствует в большинстве эукариотических клеток. Хотя цистерны, похожие на аппарат Гольджи, не обнаружены в клетках ряда протистов (лямблий, дизентерийных амеб и др.), недавние молекулярно-биологические исследования показали, что и у них есть гены белков, обычно работающих у других протистов и животных в аппарате Гольджи. Вероятно, АГ уже имелся у последнего общего предка эукариот и был утрачен некоторыми протистами вторично.
Транспорт белков, секреция и внутриклеточное пищеварение
Свободные и сидячие рибосомы: попадание белков в ЭПС
Рибосомы - внутриклеточные органоиды, осуществляющие синтез белков. От синтезируемого в данный момент белка зависит расположение рибосомы в клетке. "Свободные" рибосомы плавают в цитоплазме, не прикрепляясь к мембранам. Эти рибосомы синтезируют белки, которые работают в цитоплазме или поступают из цитоплазмы в митохондрии, пластиды и ядро. Например, протонная АТФ-синтетаза - белок, работающий в митохондриях; следовательно, рибосома, которая её синтезирует- "свободная". Миозин - двигательный белок, работающий в цитоплазме клетки, также синтезируется "свободными" рибосомами. ДНК-полимераза синтезируется "свободными" рибосомами, т.к. находится в ядре. "Сидячие" рибосомы прикреплены к мембранам шероховатой эндоплазматической сети (ЭПС). Эти рибосомы синтезируют белки, поступающие в ЭПС. Большинство из таких белков затем поступает в АГ, а оттуда - в лизосомы, на наружную мембрану или во внеклеточную среду (секреция). Например, рецептор SRP - белок, который работает на мембране ЭПС, а следовательно рибосома, синтезирующая его - "сидячая". Белок коллаген выделяется во внешнюю среду; значит, рибосома - "сидячая".
Котрансляционный транспорт в ЭПР
Транспорт белков в ЭПР осуществляется по мере их синтеза, так как рибосомы, синтезирующие белки с сигнальной последовательностью для ЭПР, «садятся» на специальные транслокационные комплексы на мембране ЭПР. Сигнальная (лидерная) последовательность для ЭПР включает обычно 5-10 преимущественно гидрофобных аминокислот и расположена на N-конце белка. В ее удаленной от конца части имеется консенсусная последовательность, узнаваемая специфической протеазой (за счет этого лидерные последовательности удаляются после завершения синтеза белка). Сигнальная последовательность опознаётся специальным комплексом — «опознающей сигнал частицей» (signal-recognition particle, SRP). В состав SRP входит шесть белков и короткая молекула РНК.
Этапы синтеза и транспорта белков в ЭПР:
Один участок SRP связывает сигнальную последовательность, а другой связывается с рибосомой и блокирует трансляцию. Отдельный домен SRP отвечает за связывание с SRP-рецептором на мембране ЭПР. Вместе с SRP рибосома перемещается к ЭПР и связывается с рецептором SRP (интегральным белком) на цитозольной стороне мембраны ЭПР. Этот комплекс (рибосома — SRP — рецептор SRP) связывается с порой — транслокатором белка на мембране ЭПР. Обычно с мРНК связаны несколько рибосом, и на мембране ЭПР сидят полирибосомы, причем каждая рибосома присоединена к своей поре. Дойдя до 3'-конца мРНК, рибосома возвращается в цитоплазму, однако мРНК удерживается у мембраны ЭПР за счет того, что новые рибосомы, cвязанные с SRP, присоединяются к ее 5'-концу. После связывания с транслокатором комплекс SRP — рецептор SRP отделяется от рибосомы, и это приводит к возобновлению трансляции. Сейчас доказано, что белок по мере трансляции проникает в ЭПР через водный канал транслокатора, имеющий воротный механизм и сформированный у эукариот четырьмя субъединицами комплекса Sec61 (гомологичные белки есть и на мембранах бактериальных клеток). После возобновления трансляции гидрофобный участок сигнальной последовательности остается связан с транслокатором, а вновь синтезируемый белок в виде петли проталкивается внутрь ЭПР. Этот процесс не требует дополнительных затрат энергии АТФ. После того, как С-конец белка отделяется от рибосомы и оказывается внутри ЭПР, протеаза сигнальной последовательности отрезает ее от белка. Белок внутри ЭПР сворачивается, приобретая нормальную конформацию, а сигнальный пептид через открывшийся в транслокаторе боковой канал перемещается в липидный бислой мембраны ЭПР, где быстро разрушается протеазами. Попавший в ЭПР белок остается в этой органелле, если имеет специальную «удерживающую в ЭПР» (ER-retaining) последовательность из четырех аминокислот на С-конце. Некоторые из остающихся в ЭПР белков играют важную роль в сворачивании и посттрансляционной модификации проходящих через ЭПР белков. Так, фермент дисульфид-изомераза катализирует окисление свободных SH-групп цистеина и образование дисульфидных связей, а белок-шаперон BiP препятствует неправильному сворачиванию и аггрегации белков до образования ими четвертичных структур, а также способствует удержанию связанных с ним белков в ЭПР.
Встраивание белков в мембраны ЭПР
Похожий, но более сложный механизм обеспечивает котрансляционное встраивание трансмембранных белков в мембрану ЭПР.
Посттрансляционный транспорт в ЭПР
Существует также посттранляционный транспорт белков в ЭПР (более обычный у дрожжей), при котором полностью синтезированный белок связывается в цитозоле с шаперонами, а затем переносится в ЭПР через транслокатор при участии шаперонов семейства Hsp70. Этот вид транспорта является АТФ-зависимым. Для транспорта пептидов (длиной преимущественно в 8-16 аминокислот) из цитозоля в ЭПР для последующей их презентации в комплексе с молекулами MHC-I существует специальный транслокатор — TAP-белок.
Транспорт белков из ЭПР в аппарат Гольджи
Белки поступают из ЭПР в АГ внутри окаймленных мембранных пузырьков, оболочка которых образуется из белка COP-II. Все правильно свернутые белки попадают в такие пузырьки «по умолчанию» и перемещаются в АГ, а затем некоторые из них возвращаются в ЭПР. Однако белки со специальными сигнальными метками концентрируются в транспортных пузырьках, а белки без таких меток попадают туда в небольшом количестве. Отделившиеся от ЭПР пузырьки, лишившись оболочек, сливаются в трубчато-везикулярные кластеры, которые с помощью моторных белков перемещаются по микротрубочкам к АГ. От этих кластеров (как и от цис-Гольджи) отделяются пузырьки, одетые белком COP-I, обеспечивающие обратный транспорт резидентных белков в ЭПР. Возврат белков в ЭПР обеспечивается короткой сигнальной последовательностью на их С-конце, которая связывается либо непосредственно с COP-I (для мембранных белков), либо со специфическим рецептором, взаимодействующим с COP-I (для растворимых белков). Лишенные этих последовательностей белки преимущественно остаются в АГ. Заключённые в пузырьки белки постепенно перемещаются из цис-Гольджи в транс-Гольджи. По мере перемещения белков внутри АГ ферменты гликозилтрансферазы осуществляют модификацию их олигосахаридных «меток». С помощью подобных ферментов в АГ происходит синтез гликопротеидов — муцинов и протеогликанов.
Основная функция аппарата Гольджи — сортировка белков
Транспорт белков из АГ в лизосомы
Мембранные белки и пищеварительные ферменты лизосом поступают из транс-Гольджи в составе окаймленных клатрином пузырьков в раннюю эндосому, а оттуда — в лизосомы. Для попадания лизосомальных ферментов (кислых гидролаз) в лизосомы на них должна присутсвовать специальная метка — остатки маннозо-6-фосфата на концах олигосахаридных цепей. Эта метка наносится в два этапа. Сперва в цис-Гольджи фермент N-ацетилглюкозаминфосфотрансфераза присоединяет к олигосахаридам остатки N-ацетилглюкозаминфосфата, а затем в транс-Гольджи второй фермент отщепляет N-ацетилглюкозамин. Метка наносится на те белки, которые имеют специфические черты третичной структуры — «сигнальный бугорок» (signal patch). Затем маннозо-6-фосфаты опознаются специфическим мембранным рецептором, к которому присоединяются гидролазы. В эндосомах при понижении рН гидролазы отделяются от рецепторов. Затем рецепторы в составе специальных пузырьков доставляются обратно а АГ. Мутации гена N-ацетилглюкозаминфосфотрансферазы приводят к развития тяжелой формы мукополисахаридоза — I-клеточной болезни. При этом заболевании все ферменты лизосом секретируются во внеклеточную среду.
Транспорт белков из внешней среды в лизосомы
Даже в норме часть лизосомальных ферментов выделяется из клетки, а часть мембранных белков лизосом попадает на её наружную мембрану. Из внеклеточной среды лизосомальные ферменты могут поглощаться путем эндоцитоза и доставляться в лизосомы.
Транспорт белков из цитоплазмы в лизосомы
Кроме везикулярного транспорта из АГ, существует и другой путь транспорта белков в лизосомы. Так, при шаперон-опосредованной аутофагии происходит направленный транспорт частично денатурировавших белков из цитоплазмы сквозь мембрану лизосомы в ее полость, где они перевариваются. Этот тип аутофагии, описанный только для млекопитающих, индуцируется стрессом. Она происходит при участии цитоплазматических белков-шаперонов семейства hsр-70, вспомогательных белков и LAMP-2, который служит мембранным рецептором комплекса шаперона и белка, подлежащего транспорту в лизосому. В антиген-презентирующих клетках (например, в дендритных клетках) транспорт пептидов, презентируемых в комплексе с MHC-II, может происходить прямо в лизосомы с помощью белка-транслокатора TAPL.
Транспорт белков в ядро и из ядра
В ядро и из ядра белки транспортируются через ядерные поры. Через ядерную пору может одновременно транспортироваться до 500 макромолекул в обоих направлениях. Белки (пептиды) с молекулярной массой до 5.000 дальтон свободно диффундируют через ядерные поры (так что их концентрация в цитоплазме и в ядре одинаковая). Путем пассивного транспорта (диффузии) через поры могут проникать белки с молекулярной массой до 60.000 дальтон. Из более крупных белков в ядро попадают только обладающие сигнальной последовательностью для ядра (это один или два коротких участка белка, богатых остатками положительно заряженных аминокислот — аргинина или лизина). С этой последовательностью связываются специальные белки — рецепторы импорта в ядро (иногда с помощью дополнительных адаптерных белков). Рецепторы импорта в ядро связываются также с компонентами ядреных пор. Энергию для транспорта обеспечивает гидролиз ГТФ, осуществляемый малыми мономерными ГТФ-азами — Ran-белками. В цитоплазме Ran-белок находится в связанном с ГДФ виде, так как в цитоплазме локализованы Ran-GAP белки (белки-активаторы ГТФ-азной активности Ran), а в ядре Ran-белок находится в связанном с ГТФ виде, так как в ядре локализован белок, обеспечивающий обмен ГДФ на ГТФ. Ran-ГТФ, связываясь на внутренней стороне ядреной поры с «нагруженным» рецептором импорта в ядро, обеспечивает его прохождение внутрь ядра и разгрузку. Затем рецептор с присоединенным Ran-ГТФ выходит в цитоплазму, где GAP-белок вызывает гидролиз ГТФ и отделение Ran-ГДФ от рецептора импорта в ядро. Аналогичный механизм обеспечивает экспорт белков из ядра, только эти белки должны обладать иной сигнальной последовательностью, с которой связываются рецепторы экспорта из ядра (белки, сходные по структуре с рецепторами импорта).
Транспорт белков из аппарата Гольджи на наружную мембрану
Белки, встроившиеся в мембрану ЭПС и попавшие оттуда в составе везикул в АГ, могут перемещаться на наружную мембрану клетки. Их направление к мембране осуществляется благодаря взаимодействию везикул с микротрубочками цитоскелета и благодаря особым стыковочным белкам, которые обеспечивают слияние везикул с мембраной.
Секреторная функция аппарата Гольджи
Эндоцитоз: фагоцитоз и пиноцитоз
Эндоцитоз — способ поглощения клеткой веществ, при котором поглощаемые вещества окружаются мембраной и первоначально попадают в пузырек из мембраны.
Фагоцитоз — поглощение клеткой крупных оформленных частиц (обычно видимых в световой микроскоп, то есть размером не меньше сотен нанометров). Типичный пример фагоцитоза - поглощение бактерий амебой или клеткой-фагоцитом в теле человека.
Пиноцитоз — поглощение клеткой более мелких частиц: растворенных макромолекул (чаще всего белков) или их комплексов (например, поглощение ЛПНП клетками печени из плазмы крови). В целом механизмы фагоцитоза и пиноцитоза очень сходны; принципиальной разницы и четкой границы между этими процессами нет, хотя одно отличие все-таки можно указать. При пиноцитозе (если он рецептор-опосредованный, см. ниже) одна молекула рецептора обычно связывает одну молекулу лиганда; при фагоцитозе несколько молекул рецепторов связываются с поглощаемой частицей. Типичный эндоцитоз встречается у эукариот, лишенных клеточной стенки - животных и многих протистов. Долгое время считалось, что прокариоты полностью лишены способности к эндоцитозу. Однако в 2010 г была опубликована статья, сообщающая об открытии эндоцитоза у бактерий рода Gemmata.
Экзоцитоз и трансцитоз
Молекулярная машина экзоцитозного высвобождения нейромедиатора в синапсе. SNARE комплекс формируется за счёт образования четырёхспиральной сцепки между синаптобревином, синтаксином и SNAP-25. Синаптотагмин служит кальциевым сенсором и внутренним регулятором образования белкового комплекса
Экзоцитоз есть как у эукариот, так иу прокариот. Экзоцитоз (от греч. Έξω — внешний и κύτος — клетка) у эукариот — клеточный процесс, при котором внутриклеточные везикулы (мембранные пузырьки) сливаются с наружной клеточной мембраной. При экзоцитозе содержимое секреторных везикул (экзоцитозных пузырьков) выделяется наружу, а их мембрана сливается с клеточной мембраной. Практически все макромолекулярные соединения (белки, пептидные гормоны и др.) выделяются из клеток эукариот этим способом. У прокариот везикулярный механизм экзоцитоза не встречается, у них экзоцитозом называют встраивание белков в клеточную мембрану (или в наружную мембрану у грамотрицательных бактерий), выделение белков из клетки во внешнюю среду или в периплазматическое пространство [10].
Экзоцитоз может выполнять различные задачи:
доставка на клеточную мембрану липидов, необходимого для роста клетки;
доставка на клеточную мембрану мембранных белков, таких как рецепторы или белки-транспортёры. При этом часть белка, которая была направлена внутрь секреторной везикулы, оказывается выступающей на наружной поверхности клетки;
выделение различных веществ из клетки; это могут быть, например, непереваренные остатки пищи у фаготрофных протистов, пищеварительные ферменты у животных с полостным пищеварением, белки межклеточного вещества у животных и материал клеточной стенки у растений, сигнальные молекулы (гормоны или нейромедиаторы).
У эукариот различают два типа экзоцитоза:
Кальций-независимый конститутивный экзоцитоз встречается практически во всех эукариотических клетках. Это необходимый процесс для построения внеклеточного матрикса и доставки белков на внешнюю клеточную мембрану. При этом секреторные везикулы доставляются к поверхности клетки и сливаются с наружной мембраной по мере их образования. Кальций-зависимый неконститутивный экзоцитоз встречается, например, в химических синапсах, где служит для выделения нейромедиаторов. При этом типе экзоцитоза секреторные пузырьки накапливаются в клетке, а процесс их высвобождения запускается по определённому сигналу, опосредованному быстрым повышением концентрации ионов кальция в цитозоле клетки. В пресинаптических мембранах процесс осуществляется специальным кальций-зависимым белковым комплексом.
Общая схема фагоцитоза и внутриклеточного пищеварения
Роль внутриклеточного пищеварения для животных
Аутофагия, её роль
Аутофагия (от др.-греч. αὐτός — сам и φαγεῖν — «есть»), «самопожирание» — это процесс, при котором компоненты клетки доставляются внутрь её лизосом и подвергаются в них деградации. Сейчас различают три типа аутофагии — микроаутофагию, макроаутофагию и шаперон-зависимую аутофагию. При микроаутофагии, как при образовании мультивезикулярных телец, образуются впячивания мембраны эндосомы или лизосомы, которые затем отделяются в виде внутренних пузырьков, только в них попадают вещества, синтезированные в самой клетке. Таким путем клетка может переваривать белки при нехватке энергии или строительного материала (например, при голодании). Но процессы микроаутофагии происходят и при нормальных условиях и в целом неизбирательны. Иногда в ходе микроаутофагии перевариваются и органоиды; так, у дрожжей описана микроаутофагия пероксисом и частичная микроаутофагия ядер, при которой клетка сохраняет жизнеспособность. При макроаутофагии участок цитоплазмы (часто содержащий какие-либо органоиды) окружается мембранным компартментом, похожим на цистерну эндоплазматической сети. В результате этот участок отделяется от остальной цитоплазмы двумя мембранами. Такие двухмембранные органеллы, окружающие удаляемые органеллы и цитоплазму, называются аутофагосомы. Аутофагосомы соединяются с лизосомами, образуя аутофаголизосомы, в которых органеллы и остальное содержимое аутофагосом перевариваются.Видимо, макроаутофагия также неизбирательна, хотя часто подчеркивается, что с помощью нее клетка может избавляться от «отслуживших свой срок» органоидов (митохондрий. рибосом и др.).
Третий тип аутофагии — шаперон-опосредованная. При этом способе происходит направленный транспорт частично денатурировавших белков из цитоплазмы сквозь мембрану лизосомы в ее полость, где они перевариваются. Этот тип аутофагии, описанный только для млекопитающих, индуцируется стрессом. Она происходит при участии цитоплазматических белков-шаперонов семейства hsc-70, вспомогательных белков и LAMP-2, который служит мембранным рецептором комплекса шаперона и белка, подлежащего транспорту в лизосому. При аутофагическом типе клеточной гибели перевариваются все органеллы клетки, оставляя лишь клеточный дебрис, поглощаемый макрофагами.
Схема убиквитинилирования белков
Белки не вечны. Они вступают в химические реакции, в результате которых «портятся», утрачивают работоспособность. Поэтому практически все белки в клетке и в организме регулярно заменяются. «Испорченные» белки внутри клеток метятся с помощью специального белка — убиквитина. Помеченные убиквитином белки поступают в специальные органоиды — протеасомы, внутри которых распадаются на отдельные аминокислоты. Убиквити́н (от англ. ubiquitous — вездесущий) — небольшой консервативный белок, который у эукариот может присоединяться к другим белкам. Убиквитинирование — это посттрасляционное присоединение ферментами убиквитин-лигазами одного или, чаще, нескольких мономеров убиквитина с помощью ковалентной связи к боковым аминогруппам белка-мишени. Присоединение убиквитина влияет на внутриклеточную локализацию и функцию белков. Самым первым открытием роли убиквитина в клетке стало доказательство его участия в деградации белков. Белки, помеченных мультиубиквитиновыми цепями, расщепляются с помощью 26S- протеасомы. Однако впоследствии оказалось, что система убиквитина вовлечена и в такие важные процессы, как размножение и дифференцировка клеток, реакция на стресс и патогены, репарация ДНК.В 2004 г Аарон Чехановер, Аврам Гершко и Ирвин Роуз были удостоены Нобелевской премии по химии «за открытие убиквитин-опосредованной деградации белка». А теперь немного о самих протеасомах. Есть два вида протеасом: 26S протеасомы и 20S протеасомы. 20S протеасома входит в качестве протеолитического ядра (камеры , где происходит деградация белков) в состав 26S протеасомы. 20S протеасома представляет собой полый цилиндр длиной 15-17 нм и диаметром около 11-12 нм. Он образован четырьмя лежащими друг на друге кольцами, состоящими каждое из семи белковых субъединиц, причем внешние кольца состоят из субъединиц а-типа, а внутренние - из субъединиц b-типа. Канал внутри такого цилиндра образует три камеры: большую центральную и две меньшие по краям. В центральной камере происходит протеолиз - расщепление белков на аминокислоты, а боковые камеры, за счет гидрофобности участков субъединиц а-колец, не дают белкам случайно проникнуть в протеолитическую камеру и тем самым препятствует случайному разрушению рабочих белков. Также субъединицы а-колец отвечают за присоединение к протеасоме других молекулярных комплексов, регулирующих её работу.
Маркировку белков, направляемых в протеасомы, осуществляет система убиквитинирования
У млекопитающих до 90% клеточных белков (не только всех короткоживущих, но и большинства долгоживущих) подвергается гидролизу в полости протеасомы. Однако, прежде чем начнется этот процесс, она должна распознать объект протеолиза по какому-то признаку, ярлыку. Оказалось, маркировкой занимается специальная система ферментов (ее называют системой убиквитинирования). Маркером же служит цепочка не менее чем из четырех молекул белка убиквитина, состоящего из 76 аминокислотных остатков. Как образование цепочки через остаток лизина-48 в каждой молекуле, так и присоединение ее к белку-субстрату как раз и обслуживается системой ферментов. Эта система, включающая три типа ферментов (Е1, Е2 и Е3), высоко специфична и избирательна за счет того, что построена по принципу иерархического усложнения. Фермент Е1 (в клетке он только один) активирует молекулу убиквитина и передает ее одному из ферментов семейства Е2 (их называют конъюгирующими). Затем в каскад реакций вступает третий участник — представитель семейства Е3, лигаз, “сшивающих” ферментов. Он принимает убиквитин от Е2, соединяется с белком-субстратом и ковалентно пришивает к нему цепочку убиквитина. Если Е1 не имеет разновидностей, то семейство Е2 насчитывает 13 членов в клетке дрожжей Saccharomyces cerevisiae, а у млекопитающих — гораздо больше. В семействе Е3 сейчас известно около 100 разных лигаз, они-то и определяют в конечном счете высокую специфичность всей протеолитической системы. Почему же цепочка убиквитина пришивается именно к тому белку, чья судьба предрешена? Оказывается, он уже несет признаки смерти — специфические сигналы, которые включают процесс деградации. Ими могут быть участки внутри белковой молекулы или на ее N-конце. Видимо, в определенных условиях они становятся доступными для узнавания ферментной системой, ответственной за маркировку. К основным сигналам для присоединения убиквитина могут быть отнесены следующие: • конформация N-терминальной области пептида, в частности наличие «дестабилизирующей» N-концевой или другой свободной -аминогруппы («N-концевое правило») или специфически расположенный лизин субстрата; • определенные короткие мотивы в последовательности аминокислотных остатков • нарушения вторичной и третичной структуры белка (неправильное свертывание полипептидной цепи); • повреждение боковых цепей остатков аминокислот, в том числе их окисление (например окисление остатков метионина); • избыточное гликозилирование белков и пептидов. Некоторые N-концевые аминокислотные остатки (у эвкариот особенно часто Арг, Лиз, Лей, Фен, Асп) играют большую роль в определении жизни многих короткоживущих белков (в среднем они существуют от нескольких минут до трех часов), а также частично разрушенных белков или белков с измененной третичной структурой. В ряде случаев дестабилизирующие аминокислоты присоединяются к N-концу долгоживущих белков специфическими ферментами, после чего такие белки быстро разрушаются протеасомой. На зависимость скорости деградации от природы N-концевых аминокислот (правило N-конца) первым обратил внимание наш бывший соотечественник А.Варшавский, он же ввел понятие “короткоживущие белки”. Цепочка убиквитина способна присоединяться к белку-мишени и по сигналам, возникающим за счет некоторых вторичных модификаций (например, фосфорилирования) или соединения со вспомогательными белками.
Протеасома расщепляет белки на короткие пептиды,попадающие в цитоплазму
Маркировка белка-субстрата (мишени) цепочкой убиквитина завершилась. Теперь ее узнает и связывается с ней одна или более субъединиц регулятора РА700. Этот процесс, как и последующее разворачивание субстрата, нуждается в энергии АТФ. Видимо, роль АТФазы выполняет тот же белок-регулятор. Развернутая, линейная молекула белка протягивается через регулятор, играющий роль рта протеасомы, и через открытое отверстие в a-кольце проникает в протеолитическую камеру. Здесь белок расщепляется на полипептиды длиной от 5 до 24 аминокислотных остатков. Они высвобождаются из протеасомы и в цитоплазме могут подвергнуться гидролизу до аминокислот протеазами (например, эндопептидазами). Часть этих полипептидов переносятся в лизосомы и затем перемещаются на поверхность клетки в комплексе с белками МНС, определяя ее антигенные свойства. Ненужная больше маркировочная цепочка из молекул убиквитина ликвидируется: изопептидазы разрывают ее на мономеры.
Работа протеасом играет важную роль в регуляции жизнедеятельности клетки
Расщепление белков в протеасомах – главный механизм регуляции времени жизни короткоживущих белков. Видимо, протеасомы принимают участие и в процессах деградации белков и пептидов с аномальной структурой. Деградация короткоживущих регуляторных белков через убиквитин-протеасомный путь играет важную роль в основополагающих процессах жизнедеятельности клетки. К таким белкам, например, относятся циклины, циклин-зависимые киназы и их ингибитры, супрессоры опухолей, онкобелки, активаторы транскрипции и их ингибиторы и многие другие. Весьма детально изучена деградация циклинов – регуляторных белков, которые синтезируются и затем быстро разрушаются на различных фазах клеточного цикла, контролируя тем самым его прогрессию.
Итак, деградация белка в протеасомах:
регулирует время жизни важнейших белков,
удаляет из клетки чужеродные и аномальные белки,
поставляет образовавшиеся в результате гидролиза полипептиды в качестве антигенов, способных сообщать иммунной системе о неполадках в клетке.
Таким образом, внутриклеточный протеолиз — это не механический процесс деградации белков, а один из основных факторов, которые регулируют жизнедеятельность клетки.
Строение ядра
Ядро окружено ядерной оболочкой. Она состоит из двух элементарных мембран, между которыми находится околоядерное (перинуклеарное) пространство. Под внутренней мембраной находится состоящая из белков ядерная пластинка — ламина. Оболочка ядра пронизана ядерными порами. Внутри ядра содержится жидкая кариоплазма (аналог цитоплазмы) и хроматин — деспирализованные в период между делениями клетки хромосомы. В ядре содержатся одно или несколько ядрышек, состоящих из белков и РНК. В них происходит сборка субъединиц рибосом.
Ядерные поры
Ядерные поры — транспортные каналы, пронизывающих двухслойную ядерную оболочку. Через них происходит обмен веществами между ядром и цитоплазмой клетки. Переход молекул из ядра в цитоплазму и в обратном направлении называется ядерно-цитоплазматическим транспортом. Ядерные поры — это не просто отверстия, а сложно устроенные, регулируемые белковые комплексы.
Структура и свойства ядерных пор
Структура ядерных пор
Nuclear pore. Side view. 1. Nuclear envelope. 2. Outer ring. 3. Spokes. 4. Basket. 5. Filaments. (Drawing is based on electron microscopy images)
Ядерные поры — это не просто отверстия, а сложно устроенные, многофункциональные регулируемые структуры — белковые комплексы, образованные приблизительно 30 белками — нуклеопоринами. Белковая составляющая ядерной поры обозначается термином «комплекс ядерной поры» (англ. nuclear pore complex, NPC). Масса комплекса ядерной поры колеблется в пределах от ~44 МДа в клетках дрожжей до ~125 МДа у позвоночных. По данным электронной микроскопии, ядерные поры в поперечном сечении имеют форму «восьмиспицевого тележного колеса», то есть имеют ось симметрии восьмого порядка. Эти данные подтверждает тот факт, что молекулы нуклеопоринов присутствуют в составе ядерной поры в количестве, кратном восьми. Проницаемый для молекул канал располагается в центре структуры. Комплекс ядерной поры заякорен на ядерной оболочке с помощью трансмембранной части, от которой к просвету канала обращены структуры, получившие название спиц (англ. spokes), по аналогии со спицами тележного колеса. Эта коровая часть поры, построенная из восьми доменов, с цитоплазматической и ядерной сторон ограничена соответственно цитоплазматическим и ядерным кольцами (англ. rings; у низших эукариот они отсутствуют). К ядерному кольцу прикреплены белковые направленные внутрь ядра тяжи (ядерные филаменты, англ. filaments), к концам которых крепится терминальное кольцо (англ. terminal ring). Вся эта структура носит название ядерной корзины (англ. nuclear basket). К цитоплазматическому кольцу также прикреплены направленные в цитоплазму тяжи — цитоплазматические филаменты. В центре ядерной поры видна электронноплотная частица, «втулка» или транспортер (англ. plug).
Свойства ядерных пор
Количество ядерных пор на одно ядро у дрожжей — примерно 200, в большинстве клеток человека — 3000-5000, а в зрелых ооцитахах шпорцевой лягушки (Xenopus laevis) — до 50 млн. Этот показатель может также варьировать в зависимости от типа клетки, состояния организма и стадии клеточного цикла. Например, в клетках позвоночных количество ядерных пор удваивается на протяжении S фазы, одновременно с удвоением хромосом. При разборке ядерной оболочки во время митоза ядерные поры позвоночных распадаются на субкомплексы с массами около миллиона дальтон. Показано, что разборка комплекса ядерной поры инициируется циклин B-зависимой киназой, фосфорилирующей нуклеопорины. После завершения клеточного деления ядерные поры собираются заново. Ядерные поры интерфазного ядра перемещаются по мембране большими массивами, а не независимо друг от друга, причем эти перемещения происходят синхронно с перемещениями ядерной ламины. Это служит доказательством того, что ядерные поры механически связаны между собой и формируют единую систему — сеть (англ. NPC network).
Транспорт веществ через ядерные поры
The Ran-GTP cycle
Ядерно-цитоплазматический транспорт можно разделить на две категории: активный транспорт, требующий затрат энергии, а также специальных белков-рецепторов, и пассивный транспорт, протекающий путем простой диффузии молекул через канал ядерной поры.
Пассивный транспорт
Молекулы небольших размеров (ионы, метаболиты, мононуклеотиды и т. д.) способны пассивно диффундировать в ядро. Проводимость ядерных пор для молекул разных размеров различна. Белки массой до 15 кДа быстро проникают в ядро, в то время как для белка массой более 30 кДа на это требуется определенное время. Белковые молекулы массой более 60-70 кДа, по-видимому, вообще не могут пассивно проходить через ядерные поры. Впрочем, пропускная способность ядерных пор для пассивной диффузии может изменяться в зависимости от типа клетки и стадии клеточного цикла.
Активный транспорт
Путём активного транспорта через ядерные поры могут проходить гораздо более крупные молекулы и целые надмолекулярные комплексы. Так, рибосомные субъединицы размерами до нескольких мегадальтон транспортируются из ядра в цитоплазму через ядерные поры, и нет никаких оснований предполагать, что процесс транспорта сопровождается частичной разборкой этих субъединиц. Молекулы РНК, синтезируемые в ядре, поступают через поры в цитоплазму, а в ядро попадают белки, участвующие в ядерном метаболизме. Причем одни белки должны поступать в ядро конститутивно (например, гистоны), а другие в ответ на определенные стимулы (например, транскрипционные факторы). У ядерных белков идентифицированы специальные сигнальные последовательности, отвечающие за их локализацию. Самая распространенная из них, так называемый «классический» сигнал ядерной локализации — NLS (от англ., Nuclear Localization Signal), представляет собой один или два участка, состоящих из положительно заряженных аминокислот, аргинина и лизина. Транслокация белков в ядро, в отличие от транслокации в митохондрии и ЭПС, не сопровождается отщеплением этой сигнальной последовательности и разворачиванием полипептидной цепи. NLS-содержащие белки, как и все другие субстраты систем ядерного транспорта, переносятся в ядро в комплексе со специальными белками — транспортинами, или кариоферинами (англ. transportins, karyopherins). Каждый транспортин или комплекс транспортинов для осуществления своей функции должен обладать тремя активностями: во-первых, он должен узнавать и связывать транспортируемый субстрат, во-вторых, заякориваться на ядерной поре, и в-третьих, связывать небольшой белок — GTPазу Ran, относящуюся к семейству Ras-подобных ГТФаз и служащую для сопряжения транспорта с гидролизом ГТФ, что придает процессу необратимость (снабжает его энергией). Собственно акт гидролиза ГТФ осуществляется непосредственно этим белком. Фактор обмена нуклеотидов (англ. GTPase Еxchange Factor, GEF) для Ran — хроматин-связывающй белок RCC1 — локализован строго в ядре, а активаторы ГТФазной активности (англ., GTPase Activation Protein, GAP) RanGAP1 и некоторые другие белки — строго в цитоплазме. Эта асимметричная локализация приводит к формированию градиента: в ядре находится преимущественно ГТФ-связанная форма Ran, в цитоплазме, наоборот, ГДФ-связанная. Ran используется для снабжения энергией как процессов импорта, так и процессов экспорта различных субстратов, а вся схема носит название Ran-цикла (англ., Ran-cycle). Ran-цикл снабжает энергией и экспорт, и импорт, используя общий принципиальный механизм, ключевыми стадиями которого являются гидролиз ГТФ в цитоплазме и обмен ГДФ на ГТФ в ядре.
Механизм импорта белков в ядро
Рассмотрим механизм поступления субстратов в ядро на примере импорта NLS-содержащих белков. Первой стадией транспортировки является узнавание субстрата транспортинами, в данном случае комплексом импортинов-α/β (транспортины, участвующие в транспорте в ядро называются импортинами, а из ядра — экспортинами). Затем образовавшийся комплекс заякоривается на белках ядерной поры с цитоплазматической стороны и транслоцируется через канал в ядро, где с ним связывается Ran-ГТФ, что вызывает диссоциацию комплекса и высвобождение груза. После этого импортины в комплексе с Ran-ГТФ направляются обратно в цитоплазму, где Ran под действием RanGAP1 гидролизует ГТФ (ГТФ => ГДФ + PO43-). Комплекс Ran-ГДФ-импортины α/β нестабилен и диссоциирует. Ran-ГДФ поступает обратно в ядро при помощи собственного переносчика, белка NTF2. В ядре под действием белка RanGEF ГДФ в активном центре Ran заменяется на ГТФ, и цикл, тем самым, замыкается.
Механизм экспорта белков из ядра
Теперь рассмотрим механизм экспорта из ядра на примере белков, содержащих сигналы ядерного экспорта (англ., Nuclear Export Signal, NES). Для этой сигнальной последовательности характерно выскокое содержание гидрофобных аминокислот. Первой стадией транспортировки здесь также является рецепция субстрата специфическим экспортином Crm1 (англ., Chromosome Region Maintenance) и образование комплекса. Главным отличием механизмов экспорта является тот факт, что в состав транслоцирующегося комплекса в случае экспорта помимо субстрата и Crm1 входит и Ran-ГТФ, то есть сопряжение с циклом Ran происходит на стадии транслокации, а не на стадии реимпорта рецептора. После прохождения через ядерную пору в цитоплазму Ran расщепляет ГТФ, комплекс теряет стабильность и диссоциирует, высвобождая груз.
Хроматин
Хроматин — это вещество хромосом: комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. ДНК в клетке всегда входит в состав хроматина, поэтому именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.т Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, — надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков-гистонов четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь молекул. Гистон H1, более крупный, чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшие уровни упаковки хроматина изучены гораздо хуже. Упаковка хроматина может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в составе гетерохроматина, не транскрибируется, обычно это состояние характерно для незначащих (не кодирующих белки) или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит у большинства эукариот перед делением клетки. Если хроматин упакован неплотно, его называют эухроматин. Этот вид хроматина обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием. Считается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины. Длины метафазных хромосом человека на цитологических препаратах лежат в пределах 1-10 мкм. Однако, по данным новых исследований, в клетке хромосомы имеют иную форму, а при приготовлении препаратов в результате фиксации и окраски сильно вытягиваются.
Ядрышко
Ядерный матрикс
Я́дерный скеле́т, или ядерный матрикс (англ. nuclear matrix) — опорная структура ядра клетки, составленная периферической пластинкой (ламиной) и пронизывающими ядро тяжами. В настоящий момент функция ядерного скелета окончательно не выяснена. Считается, что матрикс построен преимущественно из негистоновых белков, формирущих сложную развлетвленную сеть, сообщающуюся с ядерной ламиной. Возможно, ядерный матрикс принимает участие в формировании функциональных доменов хроматина. В геноме эукариот имеются специальные незначащие А-Т-богатые участки прикрепления к ядерному матриксу (англ. S/MAR — Matrix/Scaffold Attachment Regions), служащие, как предполагается, для заякоривания петель хроматина на белках ядерного матрикса. Впрочем, не все исследователи признают существование ядерного матрикса в виде прочной, относительно стабильной сети фибриллярных белков, подобной цитоскелету цитоплазмы эукариот.
Опыты по удалению и пересадке ядер
Еще в конце XIX века были проведены первые опыты по удалению ядер и отдельных хромосом.
Хромосомы — структура и функции
Хромосо́мы — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. У большинства эукариот хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. В течение интерфазы они обычно деспирализуются; но у динофлагеллят и некоторых других протистов хромосомы остаются спирализованными и в период интерфазы, а, например, у малярийного плазмодия остаются деспирализованными и во время деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.
От чего зависит количество ядрышек в клетке?
Деление клетки
Механизмы деления клетки у прокариот
Митоз и мейоз — способы деления клеток эукариот. Роль митоза и мейоза в жизненном цикле
Митоз — способ деления клеток эукариот, при котором каждая дочерняя клетка получает то же число (и тот же набор) хромосом, что и материнская. Митозом могут делиться как гаплоидные, так и диплоидные клетки. При митозе клетки-потомки созраняют плоидность, которую имела материнская клетка: n → n, 2n → 2n.
Мейоз— способ деления клеток эукариот, при котором каждая дочерняя клетка получает в 2 раза меньшее число хромосом, чем материнская. При мейозе из диплоидных клеток получаются гаплоидные: 2n → n
Митоз, его роль в размножении и развитии эукариот. Фазы митоза[
Митоз — способ деления клеток эукариот, при котором каждая дочерняя клетка получает то же число (и тот же набор) хромосом, что и материнская. Митозом могут делиться как гаплоидные, так и диплоидные клетки.
Разнообразие типов митоза у эукариот
Мейоз. Фазы мейоза
Мейоз — это способ деления клеток эукариот, при котором из одной материнской клетки с двойным набором хромосом получается четыре с одинарным (если у материнской диплоидный набор, то у получившихся — гаплоидный). Мейоз включает в себя два деления:
Редукционное деление, в ходе которого к полюсам клетки расходятся гомологичные хромосомы, состоящие из пары хроматид. В результате образуется две новых клетки с гаплоидным набором.
Эквационное деление, в ходе которого обе образовавшиеся клетки делятся так же, как при митозе. Перед редукционным делением ДНК реплицируется (удваивается). Между редукционным и эквационным делениями удвоения ДНК не происходит.
Редукционное деление разбивают на четыре фазы:
Профаза I: образуется веретено деления, ядерная оболочка разрушается, а гомологичные хромосомы объединяются в биваленты (соединившиеся пары гомологичных хромосом). В это время пара хроматид из разных хромосом одного бивалента может обмениваться участками, которые содержат гомологичные последовательности ДНК (одинаковые или разные аллели одного гена). Такой процесс называется кроссинговером.
Метафаза I: во время этой фазы биваленты выстраиваются по экватору клетки, а нити веретена (микротрубочки) прикрепляются к центромерам разных гомологичных хромосом из пары. К каждой хромосоме присоединяются микротрубочки только от одного полюса веретена деления.
Анафаза I: гомологичные хромосомы каждой пары растягиваются к разным полюсам клетки. В результате образуются две клетки с гаплоидным набором хромосом.
Телофаза I: снова строится ядерная оболочка, и хромосомы раскручиваются (деспирализуются).
Эквационное деление тоже делится на четыре фазы.
Профаза II: в образовавшихся при редукционным делении клетках хромосомы конденсируются, образуется веретено деления, и нити от обоих полюсов веретена присоединяются к центромерам каждой хромосомы.
Метафаза II: хромосомы выстраиваются вдоль экватора клетки, образуя метафазную пластинку.
Анафаза II: центромера каждой хромосомы делится пополам, и нити веретена растягивают половинки хромосом (хроматиды) к разным полюсам каждой клетки.
Телофаза II почти ничем не отличается от телофазы I.
Передача сигнала в клетках
Передача сигналов от поверхности внутрь клетки необходима для функционирования любого организма. С помощью передачи сигналов клетки могут реагировать на изменения внеклеточный среды. У многоклеточных организмов с помощью передачи сигнала клетки реагируют на действие гормонов, нейромедиаторов и других сигнальных веществ, а также на другие стимулы (кроме химических). Например, многие клетки могут влиять друг на друга с помощью передачи механических или электрических стимулов, а клетки-рецепторы с помощью механизмов передачи сигналов воспринимают все раздражители (свет, запах, вкус. прикосновение и т.п.) и в конечном счете преобразуют их в нервные импульсы, передающиеся в мозг. Изучение механизмов передачи и усиления сигналов является одной из основных задач биологии клетки. Их знание необходимо для понимания механизмов формирования функционального ответа клеток в норме, его регуляции и коррекции при патологических состояниях.
Типы межклеточной сигнализации
Сейчас известно множество способов межклеточной сигнализации, которые можно классифицировать по-разному - например, по природе передаваемого сигнала. Чаще всего сигналом служат растворенные во внеклеточной жидкости химические вещества. Межклеточную сигнализацию с помощью таких веществ часто подразделяют на три основных типов - аутокринную, паракринную и эндокринную.
Аутокринная сигнализация - клетки отвечают на вещества, вырабатываемые этими же клетками.
Паракринная сигнализация - сигнализирующие клетки влияют на рядом расположенные клетки
Дистантная сигнализация(эндокринная сигнализация) - при этом гормон или действуют на клетки-мишени вдалеке от места его выработки; у человека гомрон (сигнальное вещество) в таких случаях переносится кровью.
Принципы внутриклеточной передачи сигнала
Путь передачи сигнала заключается в цепочке взаимодействий
-сигнальная молекула(лиганда)
-рецептор на поверхности клетки или внутри нее
-внутриклеточный усилительный механизм
-клеточный ответ - изменение активности белков или включение определенных специфичных для данного сигнала генов.
Клеточный рецептор — молекула (обычно белок) на поверхности клетки, клеточных органелл или растворенная в цитоплазме, специфически реагирующая изменением своей пространственной конфигурации на присоединение к ней молекулы определенного химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передающая этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов. Вещество, специфически соединяющееся с рецептором, называется лигандом этого рецептора. В настоящее время известно около 50 белков-лигандов и 14 семейств рецепторов. Лигандами служат и многочисленные вещества небелковой природы.
Основные типы белков-рецепторов
Клеточные рецепторы можно разделить на два основных класса - мембранные рецепторы и внутриклеточные рецепторы.
Основные типы мембранных рецепторов:
Ионотропные рецепторы - по существу они представляют собой ионные каналы. При действии на них лиганда они открываются или закрываются, в результате чего меняются внутриклеточные концентрации ионов и мембранный потенциал клетки. Метаботропные рецепторы - по существу они являются ферментами, так как передают сигнал, запуская какую-нибудь химическую реакцию. Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецептор инсулина).
Основные типы внутриклеточных рецепторов:
Внутриклеточными рецепторами чаще всего служат белки, которые, связываясь с лигандом, выполняют роль транскрипционных факторов.
Ионотропные и метаботропные рецепторы
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводить к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор. Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки
Никотиновый ацетилхолиновый рецептор: пример ионотропного рецептора
Данный рецептор найден в химических синапсах как в центральной, так и в периферической нервной системе, в нервно-мышечных синапсах, а также в эпителиальных клетках многих видов животных. Никотиновые рецепторы являются членами суперсемейства мембранных белков, включающих рецепторы серотонина (5-гидрокситриптамин, 5-НТ) , рецепторы для глицина и рецепторы ГАМК (гамма-аминомасляной кислоты). Было доказано, что данный рецептор в нервно-мышечных синапсах (где он расположен на мембранах клеток скелетных мышц) является гетероолигомерным комплексом, состоящим из четырех разных белковых субъединиц, которые были названы соответственно их молекулярной массе (в килодальтонах): α (40), β (50), γ (60), δ (65). При естественной экспрессии в клетке сначала возникают димерные комплексы α-γ и α-δ, потом формируется тример α-β-δ, и наконец, после объединения димера и тримера, в клеточную мембрану встраивается функциональный пентамер со стехиометрией α2βγδ. Итак, белок-рецептор ацетилхолина состоит из пяти субъединиц, которые вместе образуют канал, пронизывающий клеточную мембрану. Каждый из таких каналов может находиться в двух состояниях – открытом или закрытом. В открытом состоянии каналы проницаемы для строго определенных ионов (В основном ионов натрия и в меньшей степени - ионов калия). Большую часть времени этот канал закрыт. Но если две молекулы ацетилхолина связываются с белком, то заряд внутри макромолекулы сдвигается и, как следствие, происходит аллостерическое изменение его формы. Центральный канал расширяется, его внутренний диаметр становится приблизительно равным 0,65 нм. Благодаря этому он становится проходимым для катионов Na+ и K+. Для анионов канал остается непроходимым из-за имеющихся на внутренней стенке зарядов.
Другие ионотропные рецепторы
На многих клетках (в том числе нейронов) есть и множество других типов ионотропных рецепторов. Так, рецепторы некоторых тормозных нейромедиаторов - например, глицина - это хлорные каналы. Некоторые типы рецепторов глутамата (NMDA-рецепторы) проницаемы не только для ионов калия и натрия, но и для ионов кальция.
Основные системы внутриклеточной передачи сигнала от метаботропных рецепторов: вторичные посредники[править]
Аденилатциклазная система.
Центральной частью аденилатциклазной системы является фермент аденилатциклаза, который катализирует превращение АТФ в цАМФ(циклического аденозинмонофосфата). Этот фермент может либо стимулироваться Gs-белком (от английского stimulating), либо подавляться Gi-белком (от английского inhibiting). цАМФ после этого связывается с цФМФ-зависимой протеинкиназой, называемой также протеинкиназа А, PKA. Это приводит к ее активации и последующему фосфорилированию белков-эффекторов, выполняющих какую-то физиологическую роль в клетке.
Фосфолипазно-кальциевая система.
Gq-белки активируют фермент фосфолипазу С , которая расщепляет PIP2 (мембранный фосфоинозитол) на две молекулы: инозитол-3-фосфат (IP3) и диацилглицерол. Каждая из этих молекул является вторичным посредником. IP3 далее связывается со своими рецепторами (кальциевыми каналами) на мембране эндоплазматического ретикулума, что приводит к высвобождению ионов кальция в цитоплазму и запуску многих клеточных реакций.
Гуанилатциклазная система.
Центральной молекулой данной системы является гуанилатциклаза, которая катализирует превращение ГТФ в цГМФ. цГМФ модулирует активность ряда ферментов и ионных каналов. Существует несколько изоформ гуанилатциклазы. Одна из них активируется оксидом азота NO, другая непосредственно связана с рецептором предсердного натрийуретического фактора.
Мембранные рецепторы, сопряженные с G-белками
Бета-2 адренорецептор и распад гликогена: пример передачи сигнала
Механизм передачи сигнала от бета-адренорецептора к аденилатциклазе. КРасным показан рецептор, желтым — α-субъединица G-белка, зеленым - аденилатциклаза
При стрессе из мозгового слоя надпочечников в кровь выделяется гормон адреналин. Наряду с прочими изменениями в организме он вызывает распад гликогена и выброс глюкозы в кровь, действуя на клетки печени. Как же происходит передача сигнала в клетках печени? На наружной мембране клеток печени находится β2-адренорецептор, который активируется при взаимодействии с адреналином. Этот рецептор относится к большой группе рецепторов, сопряженных с G- белками — G-protein coupled receptors. К внутренней стороне наружной мембраны клеток печени прикреплены Gs-белки, состоящий из 3 субъединиц: α, β и γ. Взаимодействуя с β2-рецептором, G-белок распадается на α-субъединицу и β-γ субъединицу. α-субъединица обменивает прикрепленную к ней ГДФ на ГТФ, вследствие чего она активируется и взаимодействует с мембранным ферментом аденилатциклазой. Аденилатциклаза в свою очередь активируется и катализирует образование цАМФ (циклического аденозинмонофосфата) из АТФ. цАМФ служит для передачи сигнала во многих внутриклеточных процессах; это один из универсальных вторичных мессенджеров (посредников).
Активация протеинкиназы А
цАМФ диффундирует в цитоплазме и активирует протеинкиназу А. При присоединении 4-х молекул цАМФ протеинкиназа А распадается на 4 субъединицы: 2 активные и 2 неактивные. цАМФ присоединяется к регуляторным субъединицам (по 2 молекулы цАМФ к каждой субъединице). Активные каталитические субъединицы, расщепляя АТФ на АДФ и фосфат(PO43-), фосфорилируют киназу фосфорилазы (то есть присоединяют к ней фосфат). Киназа фосфорилазы в свою очередь активируется и фосфорилирует фосфорилазу. Фосфорилаза осуществляет фосфоролиз гликогена, вследствие чего он расщепляется до глюкозо-6-фосфата. Затем глюкозо-6-фосфат преобразуется в глюкозу, которая выходит из клеток печени в кровь. Чтобы остановить распад гликогена, необходимо вывести из организма адреналин (например, с помощью выделительной системы). Из-за инактивации β2-рецептора он перестает взаимодействовать с G-белком. α-субъединица G-белка расщепляет прикрепленную к ней ГТФ на ГДФ и фосфат, вследствие чего субъединицы G-белка объединяются и инактивируются. Аденилатциклаза так же инактивируется, так как она перестает взаимодействовать с G-белком, следовательно, останавливается образование цАМФ. Оставшийся в клетке цАМФ расщепляется ферментом фосфодиэстеразой, протеинкиназа А собирается и инактивируется. Фосфатные группы отсоединяются от киназы фосфорилазы и фосфорилазы ферментами фосфатазами. Воздействие адреналина на β2-рецептор дает начало реакции, проходящей с каскадным эффектом, то есть усиливающейся на каждом этапе. Небольшое количество гормона (в данном случае адреналина) вызывает существенные изменения в клетке, так как сигнал доходит до своей конечной цели уже многократно усиленным (возможно, более чем в несколько десятков тысяч раз).
Другие пути передачи сигнала от рецепторов, связанных с G-белками
К рецепторам, сопряженным с G-белками, относятся все адренорецепоры и многие другие типы рецепторов - например, мускариновые холинорецепторы. При этом с разными рецепторами взаимодействуют разные типы G-белков - иногда с прямо противоположным действием на следующие звенья цепи передачи сигнала. Выделяют четыре основных группы G-белков: Gs, Gi, Gq, and G12/13.
Гаметогенез
Оплодотворение
Дробление
Первый этап развития всех животных из яйцеклетки — дробление. В ходе дробления яйцеклетка делится на более мелкие клетки — бластомеры. Митотические деления разных всех бластомеров часто синхронизированы, так что число клеток меняется как ряд 2, 4, 8, 16...(Нередко, однако, синхронизация нарушается уже при втором делении). Образующиеся при дроблении бластомеры нередко детерминированы (их дальнейшая судьба предопределена, из каждого при нормальном развитии возникнут определенные ткани и органы), но обычно не имеют признаков тканевой дифференцировки (признаков нервных. мышечных и т.п. клеток). У большинства животных дробление заканчивается образованием однослойного зародыша — бластулы. В ходе дробления (часто до его окончания, но иногда лишь на первых этапах) собственный геном зародыша не активен. Белки синтезируются с иРНК, запасённых в цитоплазме яйцеклетки. Вот почему дробление обычно идёт по материнскому типу, а для многих признаков, определяемых в ходе дробления, характерно материнское наследование.
https://ru.wikibooks.org/wiki/Биология_клетки/Одностраничная_версия
Лекция № 7. Эукариотическая клетка: строение и функции органоидов
Органоиды — постоянные, обязательно присутствующие, компоненты клетки, выполняющие специфические функции.
Эндоплазматическая сеть
Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной.
Различают два вида ЭПС:
1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и
2) гладкая (агранулярная), мембраны которой рибосом не несут.
Функции:
1) транспорт веществ из одной части клетки в другую,
2) разделение цитоплазмы клетки на компартменты ( «отсеки»),
3) синтез углеводов и липидов (гладкая ЭПС),
4) синтез белка (шероховатая ЭПС),
5) место образования аппарата Гольджи.
Аппарат Гольджи
Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.
Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).
Функции аппарата Гольджи:
1) накопление белков, липидов, углеводов,
2) модификация поступивших органических веществ,
3) «упаковка» в мембранные пузырьки белков, липидов, углеводов,
4) секреция белков, липидов, углеводов,
5) синтез углеводов и липидов,
6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Лизосомы
Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.
Различают:
1) первичные лизосомы,
2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.
Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.
Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.
Функции лизосом:
1) внутриклеточное переваривание органических веществ,
2) уничтожение ненужных клеточных и неклеточных структур,
3) участие в процессах реорганизации клеток.
Вакуоли
Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).
В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.
Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.
Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.
Митохондрии
Строение митохондрии: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — криста; 5 — мультиферментная система; 6 — кольцевая ДНК.
Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.
Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.
Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.
Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.
Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.
Пластиды
Строение пластид: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — строма; 4 — тилакоид; 5 — грана; 6 — ламеллы; 7 — зерна крахмала; 8 — липидные капли.
Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.
Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.
Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.
Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).
Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.
Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.
Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.
Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.
Рибосомы
Строение рибосомы: 1 — большая субъединица; 2 — малая субъединица.
Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).
В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).
Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.
Функция рибосом: сборка полипептидной цепочки (синтез белка).
Цитоскелет
Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.
Клеточный центр
Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.
Органоиды движения
Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.
Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.
Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.
http://licey.net/free/6-biologiya/21-lekcii_po_obshei_biologii/stages/261-lekciya
Содержание воды в клетке — от 40 до 98% ее массы.
Роль воды в клетке: — обеспечение упругости клетки. Последствия потери клеткой воды — увядание листьев, высыхание плодов; — ускорение химических реакций за счет растворения веществ в воде; — обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов; — обеспечение растворения многих химических веществ (ряда солей, Сахаров) ;
— участие в ряде химических реакций; — участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.
https://otvet.mail.ru/question/38326886
Цитология
Основные положения клеточной теории. Клетка – структурная и функциональная единица живого стр. 1
Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки стр. 3
Органические вещества клетки: липиды, АТФ, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке. стр.5
Ферменты, их роль в процессе жизнедеятельности стр.7
Особенности строения клеток прокариот и эукариот стр. 9
Основные структурные компоненты клетки стр. 11
Поверхностный аппарат клетки стр. 12
Транспорт молекул через мембраны стр. 14
Рецепторная функция и ее механизм стр. 18
Структура и функции клеточных контактов стр. 19
Локомоторная и индивидуализирующая функции ПАК стр. 20
Органеллы общего значения. Эндоплазматическая сеть стр. 21
Комплекс Гольджи стр. 23
Лизосомы стр. 24
Пероксисомы стр. 26
Митохондрии стр. 26
Рибосомы стр.27
Пластиды стр.28
Клеточный центр стр. 28
Органеллы специального значения стр. 29
Ядро клетки. Строение и функции стр. 29
Обмен веществ и превращение энергии в клетке стр. 32
Хемосинтез стр. 36
