Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Роли и функции отдельных химических элементов и воды в клетках и организмах эукариот.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
10.77 Mб
Скачать

Вопрос 1

Почему вещества с полярными молекулами и ионной кристаллической решеткой гидрофильны, а вещества с неполярными молекулами гидрофобны?

Вопрос 2

Почему некоторые гидрофильные вещества растворимы в воде, а другие — нет?

Гидрофильность и гидрофобность — частный случай лиофильности и лиофобности. Кроме гидрофильности, можно говорить про липофильность (олеофильность) и др.

Задача 1

Мениск — поверхность воды, налитой, например. в пробирку. Какую форму — вогнутую или выпуклую — будет иметь мениск, если налить воду в пробирку из гидрофильного материала? гидрофобного материала? Объясните, почему.

Задача 1 к разделу "Вода" (ответ)[показать]

Некоторые органические вещества амфифильны[править]

Схема строения молекулы мыла и механизма его моющего действия. Гидрофобные части молекул мыла погружены в загрязняющее вещество (например, жир), гидрофильные — взаимодействуют с водой. В результате загрязнитель превращается в эмульсию и смывается.

Амфифильность — свойство молекул, одна часть которых гидрофильна, а другая гидрофобна. К амфифильным веществам относятся фосфолипиды, жирные кислоты и их соли (например, мыло), а также липопротеиды и др.. Белки также обладают амфифильными свойствами, так как обычно в их состав входят аминокислоты с гидрофильными и с гидрофобными радикалами.

За счет амфифильных свойств фосфолипидов при взаимодействии с водой они формируют мицеллы, липосомы и липидные бислои (см. Взаимодействие фосфолипидов с водой)..

Амфифильность белков влияет на образуемые ими третичные и четвертичные структуры молекул, а также позволяет молекулам мембранных белков встраиваться в клеточные мембраны.

Вода — полярный растворитель[править]

Вода хорошо растворяет полярные, или гидрофильные вещества — например, растворимые соли, аминокислоты, сахара. Молекулы воды окружают ионы или молекулы вещества, отделяя тем самым частицы друг от друга. Следовательно, в растворе молекулы (или ионы) смогут двигаться более свободно, а значит, быстрее будут протекать химические реакции. Гидрофобные вещества не будут растворяться в воде, зато молекулы H2O, притягиваясь друг к другу, смогут отделить гидрофобное вещество от самой толщи воды. Например, фосфолипиды, из которых состоит клеточная мембрана, могут благодаря взаимодействию с водой формировать липидный бислой.

Вода выполняет разнообразные функции в клетке и в организме[править]

Вода — полярный растворитель (см.выше)

Вода — реагент

Вода в качестве реагента участвует во многих химических реакциях:

В ходе фотосинтеза у растений происходит фотолиз воды — водород из состава воды входит в органические вещества, а свободный кислород выделяется в атмосферу.

Уравнение фотосинтеза:

6H2O+6CO2=C6H12O6+ 6O2

Вода участвует в гидролизе — разрушении веществ с присоединением воды. Например, гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ выделяется энергия, обеспечивающая нужда клетки.

При гидролизе солей вода является источником протонов и электронов.

Вода поддерживает форму клеток

Вода практически несжимаема (в жидком состоянии), и поэтому служит гидростатическим скелетом клетки. За счет осмоса вода создает избыточное давление внутри вакуолей растительных клеток. это тургорное давление обеспечивает упругость клеточной стенки и поддержание формы органов (например, листьев).

Вода обеспечивает транспорт веществ у растений и животных

У растений, благодаря, в частности, капиллярному эффекту, осуществляется всасывание из почвы раствора минеральных солей и их подъем от корня к другим частям растения по сосудам. Транспорт продуктов фотосинтеза происходит посредством перемещения по ситовидным трубкам водного раствора сахарозы.

Вода обеспечивает транспорт питательных веществ и выведение из организма в растворенном виде продуктов обмена веществ у животных (вода — основной компонент плазмы крови и лимфы), а также играет важную роль в работе выделительной системы.

Вода участвует в терморегуляции

Вследствие своей большой теплоемкости — 4200 Дж/(кг x К) — вода обеспечивает примерное постоянство температуры внутри клетки. Вода может переносить большое количество теплоты, отдавая ее там, где температура тканей ниже, и забирая там, где температура более высокая. Также при испарении воды происходит значительное охлаждение из-за того, что много энергии тратится на разрыв водородных связей при переходе из жидкого состояния в газообразное. Испарение жидкости — единственный способ, который позволяет теплокровным поддерживать постоянную температуру, когда температура окружающей среды становится выше температуры тела.

Полезные книги и статьи по теме:

[35] М. А. Констаниновский. Почему вода мокрая. (По этой ссылке можно скачать книгу в формате djvu). Простым и понятным языком описываются основные свойства воды.

[36]Вода знакомая и загадочная. Леонид Кульский, Воля Даль, Людмила Ленчина

(наряду с полезными сведениями книга содержит изложение непроверенных и неподтвержденных гипотез об «активированной» воде!)

[37]Water Structure and Science (англ.) — достаточно сложная научная книга о воде

Hydrophobe — Статья о гидрофобности и сверхгидрофобности из англоязычной Википедии

[38] Анимация "Свойства воды " (англ. текст)

Неорганические вещества. Функции ионов[править]

Калий — один из главных биогенных элементов, необходимых для роста растений. При его недостатке в почве резко падает урожайность, поэтому главное использование калия человеком — производство минеральных удобрений. В организме калий находится в виде катионов в основном в цитоплазме (у животных его концентрация в цитоплазме примерно в 40 раз выше, чем в крови), у растений также в клеточном соке вакуолей.

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свёртывания крови, а также в обеспечении постоянного осмотического давления крови. Ионы кальция также служат одним из универсальных вторичных посредников и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов и др. Концентрация ионов кальция в цитоплазме клеток человека составляет около 10−7 моль, в межклеточных жидкостях около 10−3 моль.

Фосфор, как и кальций, в организме позвоночных в наибольшем количестве содержится в составе минеральных солей скелетных тканей. Скелет позвоночных состоит в основном из гидроксиапатита (его эмпирическая формула — Ca5(PO4)3(OH))

Внутриклеточная и внеклеточные концентрации некоторых ионов (внутриклеточные концентрации указаны для мышечной клетки теплокровного животного), ммоль/л

Ион Внутриклеточная концентрация Внеклеточная концентрация

Na+ 12 145

K+ 155 4

Cl- 4 110

HCO3 - 8 27

Ca2+ 10−4 2

Фосфат-ионы 2 2

Анионы органических соединений 155 -

[39] И. С. Кулаев Неорганические полифосфаты и их роль на разных этапах клеточной эволюции. Сросовский образовательный журнал, 1006, N 2, с.28-35

Органические вещества[править]

Органические вещества, органические соединения — класс соединений, в состав которых входит углерод (за исключением карбидов, карбонатов, оксидов углерода и цианидов).

Название органические соединения появилось на ранней стадии развития химии во время господства виталистических воззрений. Вещества при этом разделялись на минеральные — принадлежащие царству минералов, и органические — принадлежащие царствам животных и растений. Считалось, что для синтеза органических веществ необходима особая «жизненная сила», присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером в 1824 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.

Количество известных органических соединений давно перевалило за 10 млн. Таким образом, органические соединения — самый обширный класс веществ. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов углерода, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной или тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи позволяет атомам углерода, содединяясь в молекулы, образовывать структуры различной размерности (линейные, плоские, объёмные).

Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих разной структурой и потому различными физико-химическими свойствами. Данное явление носит название изомерии.

Большинство органических веществ горючи, а при нагревании обугливаются.

Основные классы органических соединений клеток[править]

Основными классами органических соединений клетки считают белки, нуклеиновые кислоты, липиды и углеводы. На долю этих групп веществ приходится более 25 % массы клетки и наибольшее разнообразие типов молекул. При этом такие малые молекулы, как аминокислоты (и их предшественники), нуклеотиды и их предшественники, а также моносахардиы и их предшественники (часть углеводов) и жирные кислоты и их предшественники (часть липидов), то есть малые молекулы, в сумме составляют не более 3 % массы клетки, хотя они тоже довольно разнообразны (см. таблицу).

Разнообразие органических веществ бактериальной клетки (по Альбертс и др.)

Вещество или класс веществ % от массы клетки Число типов молекул

Вода 70 1

Неорганические ионы 1 20

Моносахариды и их предшественники 1 250

Аминокислоты и их предшественники 0,4 100

Нуклеотиды и их предшественники 0,4 100

Жирные кислоты и их предшественники 1 250

Другие малые органические молкулы 0,2 300

Макромолекулы (белки, нуклеиновые кислоты, полисахариды) 26 3000

Липиды, их функции[править]

Липиды — группа органических соединений, хорошо растворимых в неполярных органических растворителях (бензол, ацетон, хлороформ) и практически нерастворимых в воде.

C точки зрения современной органической химии это определение является неточным. Во-первых, такое определение вместо четкой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений — к липидам относят жирные кислоты и их производные [40]. В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы [41]. Мы будем придерживаться «биохимического» определения.

Нейтральные жиры[править]

Триглицериды. Зелёным цветом выделен остов глицерина, чёрным на белом фоне — часть молекулы жирных кислот (на рисунке — это радикалы пальмитиновой кислоты).

Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот.

Наряду с углеводами и белками, жиры — один из главных компонентов клеток животных, растений и микроорганизмов.

Жидкие жиры растительного происхождения обычно называют маслами [42].

Состав жиров отвечает общей формуле:

CH2-O-C(O)-R¹

|

CH-О-C(O)-R2

|

CH2-O-C(O)-R³,

где R¹, R2 и R³ — радикалы (иногда — различных) жирных кислот.

Как правило, в состав масел входят преимущественно ненасыщенные жирные кислоты (имеющие одну или несколько двойных связей между атомами углерода), а в состав твердых жиров — насыщенные. В составе природных жиров и масел преобладают жирные кислоты с 16-18 атомами углерода в цепи.

Функции жиров

Запасающая

Главная функция жиров в животном (и отчасти — растительном) мире — запасающая. При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) — внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г.