Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Роли и функции отдельных химических элементов и воды в клетках и организмах эукариот.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
10.77 Mб
Скачать
  1. Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.

Цитология - наука о клетки. Цитология изучает строение и химический состав клетки, функции внутриклеточных структур, функции клеток в организме животных, растений, размножение и развитие клеток. Из 5 царств органического мира, только царство Вирусы, представленные формами живого, не имеют клеточного строения. Остальные 4 царства имеют клеточное строение: царство Бактерии объединяют прокариотов – доядерные формы. Ядерные формы – эукариоты, к ним относятся царства Грибы, Растения, Животные. ^ Основные положения клеточной теории: Клетка – функциональная и структурная единица живого. Клетка – элементарная система – основа строения и жизнедеятельности организма. Открытие клетки связано с открытием микроскопа: 1665г. – Гук изобрел микроскоп и на срезе пробки он увидел ячейки, которые он назвал клетками. 1674г. – А. Левингук впервые обнаружил в воде одноклеточные организмы. Начало 19в. – Я. Пуркинье назвал протоплазмой вещество, заполняющее клетку. 1831г. – Броун обнаружил ядро. 1838-1839гг. – Шванн сформулировал основные положения клеточной теории. ^ Основные положения клеточной теории:

  1. Клетка – главная структурная единица всех организмов. 

  2. Процесс образования клеток обуславливается ростом, развитием и дифференцировкой растительных и животных клеток.

1858г. – вышел труд Вирхова “Целлюлярная патология”, в которой он связал патологические изменения в организме с изменениями в строении клеток, положив основу патологии – началу теоретической и практической медицины. Конец 19в. – Бэр открыл яйцеклетку, показав, что все живые организмы берут начало из одной клетки (зиготы). Было обнаружено сложное строение клетки, описаны органоиды, изучен митоз. Начало 20в. – стало ясным значение клеточных структур и передачи наследственных свойств. ^ Современная клеточная теория включает следующие положения:

  1. Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого. 

  2. Клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлением жизнедеятельности и обмену веществ. 

  3. Размножение клеток происходит путем из деления, и каждая новая клетка образуется путем деления исходной (материнской) клетки. 

  4. В сложных многоклеточных организмах клетки специализированны по выполняемым функциям и образуют ткани. Из тканей состоят органы, которые связаны между собой и подчинены нервным и гуморальным системам регуляции.

 Клетка – является открытой системой для всех живых организмов, для которой характерны потоки вещества, энергии и информации, связанные с обменом веществ (ассимиляцией и диссимиляцией). Самообновление осуществляется в результате обмена веществ. Саморегуляция осуществляется на уровне обменных процессов по принципу обратной связи. Самовоспроизведение клетки обеспечивается при ее размножении на основе потока вещества, энергии и информации. Клетка и клеточное строение обеспечивает:

  1. Благодаря большой поверхности – благоприятные условия для обмена веществ. 

  2. Наилучшее хранение и передача наследственной информации. 

  3. Способность организмов хранить и передавать энергию и превращать ее в работу. 

  4. Постепенная замена всего организма (многоклеточного) отмирающих частей без замены всего организма. 

  5. В многоклеточном организме специализация клеток обеспечивает широкую приспосабливаемость организма и его эволюционные возможности.

Клетки имеют структурное сходство, т.е. сходство на разных уровнях: атомарном, молекулярном, надмолекулярном и т.д. Клетки имеют функциональное сходство, единство химических процессов метаболизма.

  1. ^ Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.

Химическая организация клетки: 80% - вода. 1-2% - липиды 1-2% - неорганические вещества. 1-2% - нуклеиновые кислоты. 1-1,5% - низкомолекулярные вещества. 1-2% - углеводы. 10-12% - белки.   ^ Химический состав неорганических веществ клетки:

Кислород – 65-75 %

Магний – 0,02-0,03%

Цинк – 0,0003%

Углерод – 15-18%

Натрий – 0,02-0,03%

Медь – 0,0002%

Водород – 8-10%

Кальций – 0,04-2,00%

Йод – 0,0001%

Азот – 1,5-3.0%

Железо – 0,01-0,015%

Фтор – 0,0001%

 

Сера – 0,15-0,20%

 

 

Калий – 0,15-0,40%

 

 

Фосфор – 0,20-1,00% 

 

 

Хлор – 0,05-0,10%

 

 Вода – обязательный компонент клетки. В ней растворены многие вещества, в т.ч. органические (гидрофильные – углеводы и гидрофобные – белки). Вода необходима для работы ферментов. Функции воды:

  1. Служит для протекания реакций. 

  2. Участвует в химических реакциях 

  3. Регулирует обмен веществ 

  4. Участвует в терморегуляции 

  5. Смачивание поступающей пищи.

Биологическая роль воды определяется особенностью ее молекулярной структуры.  Осмос – проникновение молекул растворителя через полупроницаемую мембрану из раствора с меньшей концентрацией в раствор с большей концентрацией. Давление воды, с которой она давит на мембрану – осмотическое давление. Растворы, имеющие одинаковое осмотическое давление называются изотоническими. Растворы:

  1. Гипертонические – вызывают сморщивание клеток 

  2. Гипотонические – вызывают разрыв клеток 

Тургор – давление, с которым вода давит изнутри на оболочку. Соли: К неорганическим веществам кроме воды относятся и соли. Они находятся в диссоциироранном состоянии: Na , K , Ca, Mgкатионы и HPO42-, H2PO4-, HCO3- - анионы. От концентрации солей зависит осмотическое давление и ее буферные свойства, т.е. поддерживать реакцию на слабощелочном или нейтральном уровне РН. РН – отрицательный логарифм концентрации водородных ионов. РН = 7 – среда нейтральная. РН = (7;14) – щелочная среда. РН = (1;7) – кислая среда. В некоторых клетках находятся нерастворимые минеральные соли (костные клетки) за счет присутствия Ca3PO4, CaCO3.

  1. ^ Органические вещества клетки: липиды, АТФ, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.

Липиды Липиды – сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина. Липиды содержатся во всех клетках животных и растений. Они входят в состав многих клеточных структур. Витамины А, D, E, К – являются жирорастворимыми. Функции жиров:

  1. Энергетическая – 1г. жира – 9,2 ккал. 

  2. Строительная – входит в состав всех мембран. 

  3. Некоторые липиды являются предшественниками гормонов – регулируют обмен веществ. 

  4. Защитная. 

  5. Терморегуляторная.

Аденозинтрифосфорная кислота (АТФ) АТФ обеспечивает клетку энергией. Любое проявление жизнедеятельности нуждается в затрате энергии. Энергетический обмен связан с пластическим. Все реакции пластического обмена нуждаются в затрате энергии. Для осуществления реакций энергетического обмена необходим постоянный синтез ферментов, т.к. продолжительность жизни ферментов невелика. Через пластический и энергетический обмен осуществляется связь клетки с внешней средой. Живая клетка представляет собой открытую систему, т.к. между клеткой и внешней средой постоянно происходит обмен веществ и энергией. Клетка – высокоорганизованная структура, в которой экономно расходуется материалы и энергия и процессы идут с высоким КПД. КПД митохондрий - 45-60%, хлоропластов – 25%. Использование энергии АТФ:

  1. Ассимиляция. 

  2. Транспорт веществ. 

  3. Деление клетки и ее органоидов. 

  4. На процессы жизнедеятельности.

Углеводы Углеводы – органические вещества с общей формулой (CH2O)n. В живой клетке - 1-2%, в печени и мышцах – до 5%. В растительной клетке до 90% (картофель, семена). Углеводы:

  1. Простые – моносахариды – определяются по числу атомов углерода: триозы, тетрозы, пентозы, гексозы. Наиболее важны: пентозы C5H10O5 и гексозы C6H12O6. Из петоз выделяют рибозы и дезоксирибозы (рибозы входят в состав РНК, АТФ; дезоксирибозы - ДНК). Из гексоз выделяют глюкозу, фруктозу, галактозу. 

  2. Сложные – дисахариды, полисахариды.

Дисахариды – сахароза (глюкоза фруктоза), лактоза (глюкоза галактоза). Подисахариды – состоят из множества молекул моносахаридов: целлюлоза (полимер из 150-200 молекул глюкозы), крахмал. ^ Функции углеводов:

  1. Энергетическая – окисление в митохондриях мышц. 

  2. Строительная – целлюлоза в клеточной стенки растений, хитин в скелете членистоногих.

Белки Белки входят в состав всех организмов. По химической природе – белки – полимеры, мономеры которых – аминокислоты. Аминокислота – органическая кислота. ^ Состав аминокислоты:

  1. Аминогруппа – NH

  2. Карбоксильная группа – СООН

Аминогруппа в цепи белка соединена пептидной связью (CO-NH), образована карбоксильной группой и группой другой аминокислоты. Живыми организмами используется только 20 аминокислот, хотя существует их значительно больше: глицин, аланин, валин, лейцин, изолейцин, серин, треонин, аспарагиновая кислота, глутаминовая кислота, аспарагин, глутамин, лизин, аргинин, цистеин, метионин, фенилаланин, тирозин, триптофан, гистидин, пролин. ^ Различают 4структуры белка: Первичная структура - аминокислотная цепь, связанная между собой пептидными связями. Вторичная структура - белковая нить закручена в спираль и соединение участков цепи происходит за счет водородных связей (Н-Н). ^ Третичная структура – сворачивание вторичной структуры в клубок. Эта структура специфическая для каждой молекулы белка. Сворачивание происходит за счет дисульфидных мостиков (-S-S-), и сульфгидрильных мостиков (-S-H-). ^ Четвертичная структура – имеется не у всех белков – объединение нескольких структур (субъединиц). Например: гемоглобин. По своему составу белки бывают:

  1. Простые – состоят только из аминокислот 

  2. Сложные – содержат нуклеиновые кислоты (нуклеопротеиды), жиры (липопротеиды), углеводы (гликопротеиды), металлы (металлопротеиды).

Функции белков:

  1. Строительная (мембраны, ядро). 

  2. Транспортная (перенос О2 гемоглобином). 

  3. Ферментативная (ускорение биохимических реакций). 

  4. Двигательная (сократительная). 

  5. Защитная (гаммаглобулины). 

  6. Энергетическая (1г. – 4,2 ккал). 

  7. Сигнальная.

Нарушение природной структуры белка называется денатурацией. Денатурация бывает обратимой и необратимой. Ренатурация – восстановление структуры белка после прекращения воздействия. ^ 4. Ферменты, их роль в процессе жизнедеятельности.  По химической природе ферменты – белки. Ферменты – биологические катализаторы. Они способствуют ускорению реакций, входят в состав тканей. Ферменты специфически катализируют химические реакции, т.е. 1 фермент катализирует 1 тип реакций. И превращает лишь в соответствующий субстрат. Ферменты в основном катализируют превращение веществ, размеры которых по сравнению с размерами фермента очень малы. ^ Ферменты бывают:

  1. Простые 

  2. Сложные

 Простые – состоят только из белка, молекулы которых имеют активный центр – определенную, специфическую для фермента группу аминокислот в молекуле. В основном это гидролитические ферменты: амилаза, пепсин, трипсин и др. Сложные – состоят из белковой и небелковой части. Белок называется апоферментом (носителем фермента). Небелковая часть – коферментом или простатической группой: пример – органические вещества: витамины, НАД, НАДФ; неорганические вещества: атомы металлов – железо, цинк, магний. Апофетмент отвечает за специфичность молекулы фермента с молекулой субстрата. Кофермент отвечает за тип катализируемой реакции. ^ Механизм действия ферментов: Снижение энергии активации, т.е. снижение уровня энергии, необходимой для придания реакционной способности молекулы субстрата т.к. молекула фермента имеет большую величину, то возникает сильное электрическое поле, в которой молекула субстрата становится асимметричнойв результате чего химические связи в ней ослабевают. Фермент образует с субстратом фермент-субстратный комплекс. Присоединение субстрата происходит с помощью активного центра. По завершению реакции комплекс распадается на фермент и продукт реакции. Ферменты образуют в клетке ферментные системы (мультиферментативные комплексы). При этом продукт предыдущей реакции является субстратом для последующей. Активность ферментов в клетках контролируется на генетическом уровне по принципу обратной связи. Свойства ферментов:

  1. Специфичны 

  2. В отличие от химических катализаторов – ускоряют реакции в обычных условиях. 

  3. Активность ферментов меняется в зависимости от Т0, РН, концентрации субстрата. 

  4. Активируют в малых количествах, т.е. не разрушаются в процессе реакций 

  5. Ферменты – белки и имеют свойства белков.

^ Классификация ферментов: В 1961 году Международный биохимический съезд утвердил классификацию ферментов, в основу которого положен тип реакции, катализируемый данным ферментом. По этому принципу все ферменты разделены на 6 классов:

  1. Оксидоредуктазы – ферменты, катализирующие окислительно-восстановительные реакции. 

  2. Трансферазы – катализирующие перенос атомов или радикалов: пример – каталаза – 2Н2О= 2Н2О О2

  3. Гидролазы - ферменты разрывающие внутримолекулярные связи путем присоединения молекул воды: например – фосфатаза. 

  4. Лиазы – Ферменты, отщепляющие от субстрата ту или иную группу негидролитическим путем, например, отщепление карбоксильной группы декарбоксилазой. 

  5. Изомеразы – ферменты, катализирующие превращение одного изомера в другой: глюкозо-6-фосфат в глюкозо-1-фосфат. 

  6. Синтеазы – ферменты, катализирующие реакции синтеза, синтез пептидов из аминокислот, т.е. катализируют реакции соединения молекул с образование новых связей.

  1. ^ Особенности строения клеток прокариот и эукариот.

По особенностям организации выделяют клетки прокариотического и эукариотического типов. К царству Прокариот относят царство Бактерий, к царству эукариот – все остальные царства: Грибы, Растения, Животные. Эволюционно прокариоты более ранние, чем эукариоты, они возникли в Архейскую эру (около 3*109лет назад). Первые эукариоты появились около 2*109лет назад, возможно от прокариот. Прокариоты – доядерные – не имеют морфологически обособленного ядра, т.к. ядерный материал не отграничен от цитоплазмы ядерной мембраной. Эукариоты – ядерные – генетический материал окружен ядерной оболочкой.  Типичной прокариотической клеткой является бактериальные клетка: снаружи окружена клеточной стенкой особого химического состава, под клеточной стенкой – плазматическая мембрана, окружающая цитоплазму, в которой находится нуклеотид – аналог ядра. ^ Сравнительная характеристика эукариот и прокариот:

Признак

Прокариоты

Эукариоты

1. Величина клетки

От 0,5 до 5 мкм

До 40 мкм

Оболочка клетки

Есть, отличная по химическому строению от эукариот. В стенке – пептидогликан.

Есть, различны у растений и животных, нет пептидогликана 

Плазматическая мембрана

Есть

Есть

Мезосомы

Есть

Есть

Цитоплазма

Есть, движение отсутствует

Есть, движение есть

^ Мембранные органеллы-ЭПС, аппарат Гольджи, хлоропласты, митохондрии, лизосомы, пероксисомы, вакуоли.

Нет

Есть

Ядерная мембрана, наличие ядра

Нет

Есть

Организация генетического материала

1 молекула ДНК, кольцевая, находится в нуклеиде, не окружена ядерной мембраной; истинного ядра и хромосом нет

Линейная ДНК, связанная белками – гистонами и РНК, образуют хромосомы, находящиеся в ядре.

Внехромасомные факторы наследственности (цитоплазматические)

Есть

Есть

Рибосомы в цитоплазме

70 S

80 S

Включения

Есть

Есть

Цитоскелет

Нет

Есть

Жгутики

Простые микротрубочки отсутствуют, напоминают 1 из мкротрубочек оруженной плазматической мембраной

Сложные, с микротрубочками 2*9 2, окружены плазматической мембраной

Способность к активизации движений

Есть

Есть

Способность к эндоцитозу

Нет

Есть

Размножение

Бинарное деление

Митоз, мейоз 

Скорость размножения

1 деление в 20 минут

1 деление в несколько минут 

Спорообразование

Для сохранения вида – 1 спора 

Для размножения много спор

Дыхание

Бактерии – плазматической мембраной. Цианобактерии – в цитоплазматических мембранах

В митохондриях

Фотосинтез

В мембранах, не имеющих специфической упаковки; хлоропластов нет

В сложноустроенных хлоропластах с гранулами

Способность к фиксации

Есть у некоторых

Неспособны

^ 6. Основные структурные компоненты клетки Цитоплазма – представляет собой содержимое клетки, исключая ядерный аппарат (ядро). В состав цитоплазмы входит гиалоплазма, система эндомембран (мембранные органоиды) и не органоиды, в некоторых клетках цитоплазма содержит цитоплазматические включения. Гиалоплазма – является желеподобным веществом. В ней локализуются и функционируют все органоиды клетки. Гиалоплазма содержит множество ионов и низкомолекулярных белков (метаболитов) и высокомолекулярных белков. Этот компонент является микросредой, которая обеспечивает и регулирует процессы, протекающие в цитоплазме. Состав: 90% - вода, 10% - белки и водные растворы органических и неорганических веществ клетки. Система эндомембран – состоит из мембранных органоидов с их содержимым. К этим органоидам относятся эндоплазматическая сеть, комплекс Гольджи, микротельца и митохондрии. ^ 7. Поверхностный аппарат клетки. Поверхностный аппарат клетки – является универсальной субсистемой, имеется у всех клеток. Поверхностный аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой. В составе поверхностного аппарата клетки выделяют 3 компонента: 1. Плазматическую мембрану, или плазмолемму 2. Надмембранный комплекс, или гликокаликс 3. Субмембранный комплекс или субмембранный опорно-сократительный аппарат. Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран. ^ Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой. В состав надмембранного комплекса включают: 1. Углеводные части гликолипидов и гликопротеидов 2. Периферические мембранные белки, расположенные на наружней части билипидного слоя 3. Интегральные и полуинтегральные белки, имеющие наружную зону, выступающую над билипидном слоем. 4. Специфические углеводы, не связанные химически с компонентами мембраны, локализованные над билипидном слоем. 5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему. Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система.  Опорно-сократительная система состоит из:

  • Микрофибрилл, или микрофиламентов

  • Скелетных фибрилл, или промежуточных филаментов

  • Микротрубочек

Микрофиблиллы - нитивидные структуры, состоящие из: 1. Сократительного белка актина 2. Миозина Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл.  В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам. Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток.  Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и  -тубулина. Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты, которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов. В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек. Наиболее мощным центром организации микротрубочек являются центриоли. В инициации полимеризации микротрубочек играет белок -  -фактор

  1. ^ Транспорт молекул через мембраны

Обмен веществ между клеткой и средой определяется транспортной функцией ПАК. В своей деятельности клетка использует несколько видов транспорта молекул и веществ через ПАК:

  1. Свободный транспорт, или простая диффузия. 

  2. Пассивный транспорт, или облегченная диффузия 

  3. Активный транспорт 

  4. Транспорт в мембранной упаковке или цитоз.

Свободный транспорт – осуществляется только при наличии электрического градиента по обе стороны мембраны. Этот градиент существует только при разности концентрации и\или зарядов транспортируемых молекул. Величина градиента определяет направление и скорость свободного транспорта. Такое направление транспорта называют транспортом по градиенту концентрации. При этом скорость свободного транспорта прямолинейна величине градиента. Транспорт по градиенту концентрации приводит к уменьшению разности концентраций и постепенному снижению скорости свободного транспорта. Биологическая роль свободного транспорта ограничена. Это определяется его недостаточной избирательностью. Через билипидный слой могут проходить любые гидрофобные молекулы. Большинство биологически активных молекул являются гидрофильными, поэтому их свободный транспорт через билипидный слой затруднен. ^ Пассивный транспорт – облегченная диффузия – также осуществляется только по градиенту концентраций и без затрат АТФ. Скорость пассивного транспорта намного больше, чем свободного. При увеличении разности концентраций наступает момент, когда скорость становится постоянной. Транспорт осуществляется специальными молекулами – переносчиками. С их помощью через мембрану по градиенту концентрации транспортируются крупные гидрофильные молекулы (сахара, аминокислоты). В ПАК имеются пассивные переносчики для различных ионов (К , Na , Ca, Cl-, HCO3-).  Особенностью пассивных переносчиков является их высокая специфичность (избирательность) по отношению к транспортируемым молекулам. Вторая особенность – высокая скорость транспорта, которая может составлять 104 молекул в секунду и более. Клетка может регулировать количественный и качественный набор переносчиков в своем ПАК. Это позволяет клетке дифференцироваться и реагировать на изменения условий. Механизм действия переносчиков основан на их способности образовывать каналы, специфические для определенных молекул. Например: пассивный переносчик глюкозы. Изменять параметры пассивного транспорта в клетке можно с помощью лекарственных препаратов, антибиотиков. Антибиотики выступают в роли пассивных переносчиков. У эукариотичекких клетках нарушение пассивного транспорта могут вызывать некоторые токсины и яды.

http://www.studmed.ru/docs/document277?view=1

Активный транспорт – характеризуется переносом молекул против градиента концентрации, т.е. из области с низкой концентрацией молекул в область с более высокой концентрацией молекул. Для этого необходимы затраты АТФ. При отсутствии АТФ этот вид транспорта прекращается или не начинается. Работу по переносу молекул против градиента концентрации осуществляют специальные молекулы – переносчики. Такие молекулы получили название “насосы”, или “помпы”. Многие активные переносчики обладают АТФ-азной активностью: способны расщеплять АТФ и получать энергию для своей работы. Активный транспорт ионов необходим клеткам для создания соответствующих градиентов ионов. В нервных клетках градиенты ионов (K , Na ) необходимы для возникновения и проведения нервных импульсов. Энергию градиента ионов клетка может использовать для активного транспорта других молекул. Такой вид транспорта получил название вторичного активного транспорта. Вторичный активный транспорт также осуществляется с помощью переносчика. Но такой переносчик транспортирует молекулы не одного вещества, а двух или более. Пример: переносчик глюкозы в эпителиальных клетках почечных канальцев. Переносчик способен транспортировать ионов Na по градиенту концентрации и молекулы глюкозы против градиента концентрации – осуществлять сопряженный транспорт молекул.  С помощью Na -насоса клетка создает градиент с более высокой концентрацией Na вне клетки. В результате Na с сопряженным переносчиком, активирует его, открывает канал глюкозы снаружи и Na попадает в клетку вместе с молекулой глюкозы. Затем натрий снова выкачивается наружу. Градиент натрия все время сохраняется и обеспечивает вторичный транспорт глюкозы. Сопряженный транспорт, сопровождается движением обоих молекул в одном направлении, называют симпортом. В ПАК обнаруживаются переносчики, способные транспортировать разные молекулу в разном направлении, т.е. осуществлять антипорт. Пример: К -Na -насос.  Цитоз Цитоз или транспорт в мембранной упаковке используется клеткой для транспорта крупных молекул или частиц различных веществ. Этот вид транспорта характеризуется тем, что транспортируемая частица оказывается окруженной (упакованной) мембранным пузырьком. Если цитоз происходит в клетку его называют эндоцитозом. Цитоз из клетки обозначают как экзоцитоз. Для некоторых клеток характерен цитоз, при котором частицы проходят через нее. Такой вид цитоза получил название диацитоз, или трансцитоз.  Эндоцитоз. Частица “проходит” к ПАК и окружается участком плазмолеммы. В результате Частица оказывается в гиалоплазме в мембранном пузырьке, или эндосоме. ^ Различают 3 вида эндоцитоза: 1. Фагоцитоз. Для фагоцитоза характерен транспорт относительно крупных частиц. При этом виде эндоцитоза частица подходит к ПАК и взаимодействует со специальными компонентами кликокаликса (рецепторами). Это служит сигналом для активации субмембранного опорно-сократительного аппарата, который использует энергию АТФ. Вокруг частицы образуются выросты (выпячивания) участков плазмалеммы, которые окружают частицу со всех сторон. Этот процесс оканчивается образованием в периферической гиалоплазме эндесомы, которая называется фагосомой. Фагосома покрывается внутренней стороной плазмолеммы и оказывается в цитоплазме. 2. Макропиноцитоз – не имеет принципиальных отличий от фагоцитоза. Этому виду транспорта подвергаются более мелкие частицы. Образование эндосомы, которую называют пиносомой, осуществляется не выпячиванием, а впячиванием (углублением) участка плазмолеммы. После этого происходит рецепция частиц, а затем – образование и отрыв пиносомы. В этом участвует субмембранный опорно-сократительный аппарат и необходим АТФ. Некоторые вещества, например гормоны, поступают в клетку путем эндоцитоза с большей, чем обычно скоростью, за счет белков – клатринов.   3. Микропиноцитоз – сходен с макропиноцитозом, но при этом виде цитоза клетка не затрачивает АТФ. Микропиноцитоз является температуро-зависимым процессом. Он прекращается при понижении температуры. У животных микропиноцитоз встречается редко и используется как начальный этап диацитоза. При этом виде цитоза в клетки поступают наиболее мелкие частицы. У млекопитающих микропиноцитоз зарегистрирован к клетках эпителия капилляров и почечных канальцев.  4. Кроме обычного эндоцитоза возможен еще один вариант. При этом в ПАК проходит частица уже упакованная в мембранный пузырек. Затем происходит слияние участков мембран пузырька и плазмолеммы, и частица попадает в клетку. В этом случае частица оказывается в гиалоплазме без мембранной упаковки. Так в клетки животных транспортируется холестерин из плазмы крови Экзоцитоз. При экзоцитозе транспортируемое вещество упаковывается мембранным материалом в цитоплазме. Для этого используются мембраны эндоплазматической сети или комплекс Гольджи. С помощью микротрубочек этот мембранный пузырек или экзосома перемещается в периферическую гиалоплазму к плазмолемме. Мембраны экзосомы и ПАК контактируют и экзосома раскрывается. Под действием микрофибрилл и микротрубочек происходит растяжение пузырька и транспортируемое вещество оказывается за пределами клетки. При этом мембрана экзосомы становится частью плазмолеммы.Для экзоцитоза необходимы затраты АТФ. С помощью такого варианта экзоцитоза клетка может выводить во внеклеточную среду различные вещества. Возможен еще один вариант экзоцитоза, который получил название обратного пиноцитоза. В этом случае транспортируемое вещество подходит к плазмолемме без мембранной упаковки и окружается участком плазмолеммы. Образовавшийся мембранный пузырек отрывается от плазмолеммы, и вещество оказывается за пределами клетки. Такой вид экзоцитоза встречается редко. С помощью обратного пиноцитоза секретируются капли молока из клеток молочных желез млекопитающих. Диацитоз. Диацитоз является комбинацией эндоцитоза (микропиноцитоза) и экзоцитоза. Этот вид цитоза используется для переноса веществ через клеточные барьеры. С помощью диацитоза осуществляется обмен некоторых веществ между плазмой крови и тканевой жидкостью. В этом случае вещества проходят эпителиальные клетки кровеносных сосудов. Этот же вид характерен для эпителия почечных канальцев. Через клетки слизистых отдельных органов в полости путем диацитоза попадают некоторые антитела. При диацитозе происходит увеличение площади плазмолеммы (экзоцитоз) или уменьшение (эндоцитоз). Поэтому в клетках экзоцитоз всегда сопровождается эндоцитозом. Это позволяет клетке сохранить относительное постоянство плазмолеммы.

  1. ^ Рецепторная функция и ее механизм.

В ПАК имеются специальные молекулы – рецепторы, которые воспринимают (узнают) физические и химические сигналы. Рецепторами являются интегральные белки или гликопротеины и имеют общую сходную структуру. В надмембранной области (гликокаликс) наружный домен рецептора, который взаимодействует с сигналом (химической молекулой). Этот домен переходит в трансмембранный домен, который находится в билипидном слое (пересекает его). Третий, цитоплазматический домен, локализуется в периферической гиалоплазме. Транспортный домен служит для фиксации рецептора в плазмолемме и передачи сигнала путем изменения своей конформации. Эта модификация вызывает цепь последовательных реакций, в результате которых клетка реагирует на полученный сигнал. Наружный домен рецептора может быть гликозилирован, т.е. иметь олигосахаридный компонент. Он используется для рецепции сигнала. Наружный домен рецептора имеет уникальную структуру и взаимодействует только с определенными молекулами-сигналами. В результате рецепторная функция является высокоспецифичной. Взаимодействие сигнала со специфическим рецептором клетка может использовать для регуляции транспортной функции. У многоклеточных животных в качестве специфических сигналов широко используются гормоны, нейромедиаторы и иммуномедиаторы. Нейромедиатор ацетилхолин взаимодействует со своими рецепторами, в результате чего открываются каналы для K и Na в ПАК нервных клеток. Гормон инсулин усиливает работу переносчиков глюкозы. Активацию рецепторов может индуцировать эндоцитоз. Половой гормон тестостерон проникает в билипидный слой и взаимодействует со специальными рецептором. Образовавшийся комплекс транспортируется в ядро и индуцирует работу генов, которые контролируют развитие мужских половых признаков. Гормоны и медиаторы часто являются первичными сигнальными посредниками передачи информации. В этом случае активация рецептора приводит к активации фермента аденилатциклазы. Она превращает АТФ в циклическую форму АМФ (цАМФ). Циклическая АМФ способна активировать другие регуляторные белки или ферменты. В результате этого в клетке происходят определенные изменения, вызывающие адекватную реакцию клетки.  Нарушение рецепторной функции ПАК является причиной определенных болезней изменение структуры и функции рецепторов инсулина приводит к тому, что не включается переносчик глюкозы в жировых и мышечных клетках в результате развивается инсулинозависимая форма сахарного диабета. Нарушение структуры рецептора тестостерона у людей с набором хромосом XY вызывает болезнь тестикулярную феминизацию (синдром Морриса).

  1. ^ Структура и функции клеточных контактов.

 Для нормальной жизнедеятельности клеток многоклеточного организма большое значение имеют контакты между клетками. Эту контактную функцию выполняет ПАК. По функции различают 3 вида постоянных клеточных контактов: механические, изолирующие и коммуникационные. Механические контакты необходимы для образования и сохранения многоклеточных структур (тканей, органов). Этот вид контактов обеспечивает и перераспределяет механические нагрузки с одной клетки на другие. Во всех случаях основную роль в их образовании играет гликокаликс. В зоне простого механического контакта участки ПАК более удалены друг от друга, чем вне зоны контакта, в этой зоне происходит взаимодействие углеводных компонентов гликокаликса различных клеток. В результате образуется единая для контактирующих клеток надмембранная структура. Она и удерживает клетки вместе. Простой механический контакт может усложняться путем изменения конфигурации участков ПАК и образование контактов типа “замок”. В таком варианте существенную роль играет и плазмолемма. Наиболее сложный вид механического контакта получил название десмосомы. При образовании десмосомы в зоне контакта между клетками образуется белковая пластинка. От нее к плазмолемме отходят фибриллярные структуры. В формировании десмосомы принимает участие и субмембранный комплекс. В периферической гиалоплазме в зоне контакта в обеих клетках образуются толстые белковые пластинки. Эти пластинки фиксируются в гиалоплазме скелетными фибриллами. Изолирующий контакт обеспечивает разделение содержимого различных полостей организма и межклеточной жидкости. Поэтому такой вид контакта характерен для различных эпителиальных клеток. Главную роль в формировании изолированных контактов играют роль специальные интегральные белки. Они взаимодействуют между собой и с такими же белками плазмолеммы другой клетки. В результате в зоне контакта образуется непрерывные белковые полоски, которые выполняют роль барьера. Взаимодействие барьерных белков различных клеток приводит к сближению их плазмолемм в зоне контакта. Для эффективности изоляции необходима стабильность (неподвижность) белковых полосок. С этой целью белки-полоски фиксируются в билипидном слое с помощью микрофибрилл. Другим своим концом микрофибриллы взаимодействуют с микротрубочками. В зоне контакта может образовываться только несколько полосок, если необходима сильная степень изоляции. В эпителии мочевого пузыря для предотвращения попадания мочи в тканевую жидкость формируется до 8 полосок. В эпителии почечных канальцев формируется 1 полоска. Коммуникационные (щелевые) контакты формируются для обмена между клетками. Основы этих контактов специальные интегральные канальные белки-коннексины. В зоне контакта 6 молекул таких белков образуют канальную структуру, или коннексон. Коннексоны таких клеток взаимодействуют между собой и формируют общий канал. Это приводит к сближению плазмолемм различных клеток в зоне коммуникационного контакта. Как правило, в зоне такого контакта функционируют несколько коннексон. Работа коннексон регулируется клеткой путем открывания-закрывания канала. Нарушение струкуры и функции постоянных контактов приводит к различным аномалиям. Повышенная степень отделения роговых чешуек кожи эпителия (перхоть) может быть следствием аномалий формирования механических контактов. Причиной образования раковых клеток может быть неспособность образовывать коммуникационные контакты.

  1. ^ Локомоторная и индивидуализирующая функции ПАК.

Важной функцией ПАК является функция индивидуализации. Она проявляется в различии клеток по химическому строению компонентов гликокаликса. Эти различия могут касаться структуры надмембранных доменов нескольких интегральных и полуинтегральных белков. Большое значение в реализации функции индивидуализации имеют различия по углеводным компонентам гликокаликса (олигосахариды гликолипидов и гликопротеинов ПАК). Эти различия могут касаться гликокаликса одинаковых клеток разных организмов. Различный состав гликокаликса характерен и для различных клеток одного многоклеточного организма. Молекулы, ответственные за функцию индивидуализации, получили название антигенов. Структура антигенов контролируется определенными генами. Каждый ген может определять несколько вариантов одного антигена. Организм имеет большое количество разных систем антигенов. В результате он имеет уникальный набор вариантов различных антигенов. В этом проявляется функция индивидуализации ПАК. На основе функции индивидуализации многоклеточный организм отличает собственные клетки от чужих. Это очень важно при заражении организма паразитическими организмами. Клетки паразита узнаются по наличию у них антигенов, которых нет у хозяина. Чужие антигены активируют иммунную систему, которая специфически реагирует на них. В результате иммунной реакции чужеродные клетки разрушаются. Существование функции индивидуализации необходимо учитывать при трансплантации органов и тканей. Клетки трансплантата должны иметь такие же антигены, которые есть у реципиента (человек, которому пересаживается трансплантат). Для ПАК характерна локомоторная функция. Она реализуется в виде передвижения отдельных участков ПАК или всей клетки. Эта функция осуществляется на основе субмембранного опорно-сократительный аппарата. С помощью взаимного скольжения и полимеризации – деполяризации микрофибрилл и микротрубочек в определенных районах ПАК образуются выпячивания участков плазмолеммы. На этой основе происходит эндоцитоз. Согласованное перемещение многих участков ПАК приводит к движению всей клетки. Высокой подвижностью обладают клетки иммунной системы макрофаги. Они способны к фагоцитозу чужеродных веществ и даже целых клеток и передвигаются практически по всему организму. Нарушение локомоторной функции макрофагов вызывает повышенную чувствительность организма к возбудителям инфекционных заболеваний. Это обусловлено участием макрофагов в иммунных реакциях. Кроме рассмотренных универсальных функций ПАК эта субсистема клетки может выполнять и другие, специализированные функции.

  1. ^ Органеллы общего значения. Эндоплазматическая сеть.

Органеллы – постоянно присутствующие в цитоплазме структуры, специализированные на выполнении определенных функций в клетке. Они подразделяются на органеллы общего и специального значения. Эндоплазматическая сеть Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы. Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида. Функции эндоплазматической сети:

  1. Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков. 

  2. Гладкая ЭПС участвует в синтезе липидов, углеводов. 

  3. Транспорт органических веществ в клетку (по каналам ЭПС). 

  4. Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной. В ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Сав гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС. Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез трех типов белков: 

  1. ^ Мембранные белки. Все белки плазмолеммы, мембран самой ЭПС и большинство белков других органоидов являются продуктами рибосом ЭПС. 

  2. Секреторные белкиЭти белки попадают в полость ЭПС, а затем путем экзоцитоза выводятся из клетки. 

  3. ^ Внутриорганоидные белки. Эти белки локализуются и функционируют в полостях мембранных органоидов: самой ЭПС, комплекс Гольджи, лизосом, митохондрий. ЭПС участвует в образовании биомембран.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.  ЭПС является универсальным органоидом эукариотических клеток. Нарушение структуры и функции ЭПС приводит к серьезным последствиям. ЭПС является местом формирования мембранных пузырьков со специализированными функциями (пероксисомы). 

  1. ^ Комплекс Гольджи.

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн, образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.  Комплекс Гольджи может быть представлен в клетке одной диктиосомой в специальном участке цитоплазмы. В одной клетке может находиться несколько связанных между собой изолированных диктиосом.  В диктиосоме комплекса Гольджи различают 2 полюса: проксимальный (регенераторный) и дистальный (функциональный). Проксимальный полюс обращен к цитоплазме, или ядру, а дистальный – к плазмолемме. Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.  Комплекс Гольджи выполняет 3 общих клеточных функции: