Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Роли и функции отдельных химических элементов и воды в клетках и организмах эукариот.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
10.77 Mб
Скачать

Тема 1. История цитологии. Методы изучения клетки

Основные этапы развития цитологии

История открытия клетки

 

Цитология («cytos» - ячейка, клетка) наука о клетке. Современная цитология изучает: строение клеток, их формирование как элементарных живых систем, исследует формирование отдельных клеточных компонентов, процессы воспроизведения клеток, репарации, приспособления к условиям среды и другие процессы. Другими словами, современная цитология – это физиология клетки.

Развитие учения о клетке тесно связано с изобретением микроскопа (от греческого «микрос» – небольшой, «скопео» – рассматриваю). Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше.

Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона.

Первый микроскоп был сконструирован в 1610 г. Галилеем и представлял собой сочетание линз в свинцовой трубке (рис. 1.1). А до этого открытия в 1590 г. изготовлением стекол занимались голландские мастера Янсены.

 

 

Рис. 1.1. Галилео Галилей (1564-1642)

 

Впервые микроскоп для исследований применил английский физик и естествоиспытатель Р. Гук (рис. 1.2, 1.4). В 1665 г. он впервые описал клеточное строение пробки и ввел термин «клетка»(рис. 1.3). Р. Гук сделал первую попытку подсчитать количество клеток в определенном объеме пробки.

Он сформулировал представление о клетке как о ячейке, полностью замкнутой со всех сторон и установил факт клеточного строения растительных тканей. Эти два основных вывода и определили направление дальнейших исследований в этой области.

 

 

Рис. 1.2. Роберт Гук (1635-1703гг)

 

 

Рис. 1.3. Клетки пробки, которые изучал Роберт Гук

 

 

Рис. 1.4. Микроскоп Роберта Гука

В 1674 году голландский торговец Антонио ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» — движущиеся живые организмы (одноклеточные организмы, форменные элементы крови, сперматозоиды) и сообщил об этом научному обществу (рис. 1.5, 1.6). Описания этих «анималькусов» снискали голландцу мировую известность, пробудили интерес к изучению живого микромира.

 

 

Рис. 1.5. Антонио ван Левенгук (1632—1723)

 

 

Рис. 1.6. Микроскоп Антонио ван Левенгука

 

В 1693 г. во время пребывания Петра I в Дельфе А. Левенгук продемонстрировал ему, как движется кровь в плавнике рыбы. Эти демонстрации произвели на Петра I такое большое впечатление, что вернувшись в Россию, он создал мастерскую оптических приборов. В 1725 году организована Петербургская академия наук.

Талантливые мастера И.Е. Беляев, И.П. Кулибин изготавливали микроскопы (рис. 1.7, 1.8, 1.9), в конструировании которых принимали участие академики Л.Эйлер, Ф. Эпинус.

 

 

Рис. 1.7. И.П. Кулибин (1735-1818)

 

 

Рис. 1.8. И.Е. Беляев

 

 

Рис. 1.9. Микроскопы, изготовленные русскими мастерами

 

В 1671–1679 гг. итальянский биолог и врач Марчелло Мальпиги дал первое систематическое описание микроструктуры органов растений, положившее начало анатомии растений (рис. 1.10).

 

 

Рис. 1.10. Марчелло Мальпиги (1628-1694)

 

В 1671–1682 гг. англичанин Неемия Грю подробно описал микроструктуры растений; ввел термин «ткань» для обозначения понятия совокупности «пузырьков», или «мешочков» (рис. 1.11). Оба эти исследователя (они работали независимо друг от друга) дали изумительные по точности описания и рисунки. Они пришли к одному и тому же выводу относительно всеобщности построения растительной ткани из пузырьков.

 

 

Рис. 1.11. Неемия Грю (1641-1712)

 

В 20-х г. XIX в. наиболее значительные работы в области изучения растительных и животных тканей принадлежат французским ученым Анри Дютроше (1824 г.), Франсуа Распайлю (1827 г.), Пьеру Тюрпену (1829 г.). Они доказывали, что клетки (мешочки, пузырьки) являются элементарными структурами всех растительных и животных тканей. Эти исследования подготовили почву для открытия клеточной теории.

Один из основоположников эмбриологии и сравнительной анатомии, академик Петербургской академии наук Карл Максимович Бэр показал, что клетка – единица не только строения, но и развития организмов (рис. 1.12).

 

 

Рис. 1.12. К.М. Бэр (1792-1876гг)

 

В 1759 г немецкий анатом и физиолог Каспар Фридрих Вольф доказал, что клетка есть единица роста (рис. 1.13).

 

Рис. 1.13. К.Ф. Вольф (1733–1794)

 

1830-е гг. чешский физиолог и анатом Я.Э. Пуркине (рис. 1.14), немецкий биолог И.П. Мюллер доказали, что клеточная организация является универсальной для всех видов тканей.

 

 

Рис. 1.14. Я.Э. Пуркине (1787-1869)

 

В 1833 г. британский ботаник Р. Броун (рис. 1.15)описал ядро растительной клетки.

 

 

Рис. 1.15. Роберт Броун (1773—1858)

 

В 1837 году Маттиас Якоб Шлейден (рис. 1.16)предложил новую теорию образования растительных клеток, признавая решающую роль в этом процессе клеточного ядра. В 1842 он впервые обнаружил ядрышки в ядре.

Согласно современным представлениям, конкретные исследования Шлейдена содержали ряд ошибок: в частности, Шлейден считал, что клетки могут зарождаться из бесструктурного вещества, а зародыш растения — развиваться из пыльцевой трубки (гипотеза самозарождения жизни).

 

 

Рис. 1.16. Маттиас Якоб Шлейден (1804-1881гг)

 

Немецкий цитолог, гистолог и физиолог Теодор Шванн (рис. 1.17)ознакомился с трудами немецкого ботаника М. Шлейдена, которые описывали роль ядра в растительной клетке. Сопоставляя эти работы с собственными наблюдениями, Шванн разработал собственные принципы клеточного строения и развития живых организмов.

В 1838 году Шванн опубликовал три предварительных сообщения клеточной теории, а в 1839 году - труд «Микроскопические исследования о соответствии в структуре и росте животных и растений», где опубликовал основные принципы теории клеточного строения живых организмов.

Ф. Энгельс утверждал, что создание клеточной теории было одним из трёх величайших открытий в естествознании XIX века, наряду с законом превращения энергии и эволюционной теории.

 

Рис. 1.17. Теодор Шванн (1810- 1882гг)

 

В 1834–1847 гг. профессор Медико-хирургической академии в Петербурге П.Ф. Горянинов (рис. 1.18)сформулировал принцип, согласно которому клетка является универсальной моделью организации живых существ.

Горянинов делил мир живых существ на два царства: царство бесформенное, или молекулярное, и органическое, или клеточное. Он писал, что «…органический мир есть прежде всего клеточное царство …». Он отметил в своих исследованиях, что все животные и растения состоят из соединенных между собой клеток, которые он назвал пузырьками, то есть высказал мнение об общем плане строения растений и животных.

 

 

Рис. 1.18. П.Ф. Горянинов (1796-1865)

 

В истории развития клеточной теории можно выделить два этапа:

1) период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных (около 300 лет);

2) период обобщения имеющихся данных в 1838 году и формулирование постулатов клеточной теории;

Методы изучения клетки

 

Оптическая микроскопия

 

Развитие цитологии тесно связано с усовершенствованием микроскопов и методов микроскопического исследования. Несмотря на бурное развитие электронной микроскопии, световая микроскопия не теряет своего значения, в первую очередь для прижизненного изучения клеток.

Обеспечивает полезное увеличение до 2—3 тыс. раз, цветное и подвижное изображение живого объекта — возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма. Она незаменима в диагностических и исследовательских работах.

Световой микроскоп – это оптическая система, состоящая из конденсора, объектива и окуляр. Пучок света от источника освещения собирается в конденсоре, направляется на объект; пройдя через объект, лучи света попадают в систему линз объектива, они строят первичное изображение, которое увеличивается с помощью линз окуляра.

 

 

Рис. 25. Световой микроскоп

 

Световая микроскопия

Метод, который применяется при изучении прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Это могут быть, например, тонкие окрашенные срезы животных и растительных тканей и т. д. При наличии в препарате абсорбирующего элемента происходит частичное поглощение и частичное рассеивание падающего на него света, что и обусловливает появление изображения.

Возможно применение метода и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив (рис. 1.25, 1.26).

 

 

Рис. 1.26. Клетки крови человека под световым микроскопом

 

Темнопольная микроскопия

Метод основан на том, что мельчайшие частицы, лежащие за пределами разрешающей способности микроскопа, становятся видимыми в лучах, идущих под таким большим углом, что в объектив они непосредственно не попадают (мощный пучок бокового света). В объектив попадает только свет, отраженный от этих частиц; при этом они выглядят светящимися точками на темном фоне(рис. 1.27).

 

 

Рис. 1.27. Фото объекта (темное поле)

 

Поляризационная микроскопия

Метод наблюдения в поляризованном свете для исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). Таковыми являются многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр.

Наблюдение можно проводить как в проходящем, так и в отражённом свете (рис. 1.29).

 

 

Рис. 1.29. Кристаллы урата натрия (Samaras N, Rossi C. N Engl J Med. 2012)

Метод центрифугирования

 

Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки, легких и тяжелых фракций органических веществ и т. д. при этом ускорение в 300 раз больше, чем земное притяжение.

Центрифуга служит для разделения сыпучих тел или жидкостей различного удельного веса и отделения жидкостей от твёрдых тел путем использования центробежной силы. При вращении в центрифуге частицы с наибольшим удельным весом располагаются на периферии, а частицы с меньшим удельным весом — ближе к оси вращения(рис. 1.35).

 

 

Рис. 1.35. Устройство центрифуги

 

Метод слияния клеток

 

Метод искусственного слияния клеток путем склеивания поверхностей клеток - гибридизация соматических клеток и образование гетерокарионов.

При органном культивировании клетки кусочки ткани или органа (чаще всего взятые у эмбриона) выращивают на поверхности питательной среды. Кусочек органа или ткани в стерильных условиях извлекают из эмбриона, измельчают (до 0,2 мм), промывают в растворе и помещают на поверхность мембранного фильтра, расположенного на плотике из органического стекла. Плотик помещают в чашку Петри с питательной средой так, чтобы нижняя поверхность фильтра касалась поверхности питательной среды.

Органное культивирование позволяет сохранить морфологическую структуру выращиваемого органа, свойственную ему в условиях целого организма.

При этом сохраняется не только морфологическая структура, но и функциональные свойства ткани, что позволяет наблюдать процессы дифференцировки, пролиферации, выявлять действие биологически активных веществ на культуру, проследить за динамикой возникающих изменений.

Гибриды соматических клеток были открыты лишь в 60-х годах нашего столетия. В 1960 г. Барский с сотрудниками сообщили о выделении линии гибридных клеток. Гибридные клетки были получены путем смешения двух линий, выделенных ранее из 1 клетки мышиной саркомы. Было установлено, что клеточные гибриды можно получить, используя клетки различных видов животных.

При изучении межвидовых гибридных клеток, способных к пролиферации были сделаны два очень важных наблюдения:

- в гибридах могут проявиться оба генома;

- в долгоживущих межвидовых гибридах элиминируются хромосомы одного вида (рис. 1.37).

 

 

Рис. 1.37. Получение химерных животных методом слияния клеток