- •Роли и функции отдельных химических элементов и воды в клетках и организмах эукариот Доклад
- •Лекция № 7. Эукариотическая клетка: строение и функции органоидов
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 1
- •Вопрос 2
- •Вопрос 1
- •Вопрос 1. А какова концентрация протонов при рН 8,5? при рН 8,7? Как её вычислить?
- •Вопрос 2. Объем клетки бактерии — около 2 мкм³, рН цитоплазмы — 7. Сколько протонов содержится в этой клетке?
- •Вопрос 1
- •Вопрос 2
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.
- •Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки.
- •Органические вещества клетки: липиды, атф, биополимеры (углеводы, белки, нуклеиновые кислоты) и их роль в клетке.
- •Особенности строения клеток прокариот и эукариот.
- •Транспорт молекул через мембраны
- •Рецепторная функция и ее механизм.
- •Структура и функции клеточных контактов.
- •Локомоторная и индивидуализирующая функции пак.
- •Органеллы общего значения. Эндоплазматическая сеть.
- •Комплекс Гольджи.
- •Накопительную
- •Секреторную
- •Агрегационную
- •Митохондрии.
- •Рибосомы.
- •Клеточный центр.
- •Органеллы специального значения.
- •Ядро клетки. Строение и функции.
- •Биология
- •Раздел 1 происхождение и начальные этапы развития жизни на земле
- •Тема 1.1 Многообразие живого мира. Основные свойства живого
- •Тема 1.2 Возникновение жизни на Земле
- •Раздел 2 Цитология – учение о клетке
- •Тема 2.1 Химическая организация клетки. Макро- и микроэлементы
- •Тема 2.2 Строение и функции клетки
- •Тема 2.2.1 Комплекс Гольджи, лизосомы, митохондрии, рибосомы, клеточный центр; органоиды движения
- •Тема 2.3 Обмен веществ и превращение энергии в клетке
- •Тема 2.3.1 Пластический и энергетический обмен веществ в клетке
- •Тема 2.4 Деление клеток
- •Раздел 3 размножение и индивидальное развитие организмов
- •Тема 3.1 Формы размножения организмов
- •Тема 3.2 Эмбриональное развитие организмов
- •Тема 3.3 Постэмбриональное развитие
- •Раздел 4 Основы генетики и селекции
- •Тема 4.1 Основные понятия генетики
- •Тема 4.2 Основные закономерности наследственности
- •Тема 4.2.1 Неполное доминирование генов
- •Тема 4.2.2 III закон Менделя - закон независимого комбинирования признаков
- •Тема 4.2.3 Закон т. Моргана - хромосомная теория наследственности
- •Тема 4.3 Основные закономерности изменчивости
- •Тема 4.3.1 Классификация мутаций
- •Тема 4.3.2 Фенотипическая изменчивость (модификационная)
- •Тема 4.4 Селекция животных, растений и микроорганизмов
- •Тема 4.4.1 Самоопыление перекрёстно-опыляемых культур. Гетерозис
- •Тема 4.4.2 Работы и.В. Мичурина
- •Раздел 5 Эволюционное учение
- •Тема 5.1 Общая характеристика биологии в додарвиновский период
- •Тема 5.2 Дарвинизм
- •Тема 5.2.1 Размножение организмов в геометрической прогрессии. Борьба за существование и ее виды
- •Тема 5.2.2 Относительность приспособленности организмов. Вид – элементарная эволюционная единица
- •Тема 5.3 Микроэволюция
- •Тема 5.4 Макроэволюция. Биологические последствия приобретения приспособлений
- •Тема 5.5 Развитие органического мира
- •Тема 5.5.1 Низшие растения. Развитие жизни в палеозойскую эру
- •Тема 5.5.2 Появление сосудистых растений. Появление и расцвет земноводных
- •Тема 5.5.3 Расцвет класса птиц. Развитие плацентарных млекопитающих
- •Тема 5.6 Происхождение человека
- •Тема 5.6.1 Человеческие расы, единство их происхождения
- •Список литературы
- •Содержание
- •Тема 1. История цитологии. Методы изучения клетки.. 2
- •Тема 2. Строение клетки.. 32
- •Тема 3. Клетки и организмы... 60
- •Тема 4. Химия жизни.. 78
- •Тема 5. Генетическая программа организма.. 99
- •Тема 7. Функционирование клетки.. 134
- •Тема 1. История цитологии. Методы изучения клетки
- •1.3. Практическое задание
- •Тема 2. Строение клетки
- •Основные положения клеточной теории. Клетка – структурная и функциональная единица живого.
- •Накопительную
- •Секреторную
- •Агрегационную
- •Митохондрии.
- •Рибосомы.
- •Клеточный центр.
- •Закон расщепления, или второй закон Менделя
- •Закон чистоты гамет
- •Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
- •Лекция №18. Сцепленное наследование
- •Хромосомное определение пола
- •Наследование признаков, сцепленных с полом
- •Полное доминирование
- •Неполное доминирование
- •Аллельное исключение
- •Лекция №21. Изменчивость
- •Хромосомные мутации
- •Модификационная изменчивость
- •Генеалогический метод
- •Цитогенетический метод
- •Закон Харди-Вайнберга
- •Отдаленная гибридизация страница 1
- •Отдаленная гибридизация
- •Роль и функции отдельных химических элементов.
- •Тема 4. "Химический состав клетки".
Вопрос 1
Так сколько же грамм кислорода и водорода нужно взять, чтобы получить 96 г воды и чтобы при горении ни одно вещество не оказалось в избытке?
Радиоактивный распад
У каждого химического элемента есть один или более изотопов с нестабильными ядрами, которые подвержены радиоактивному распаду, в результате чего атомы испускают частицы или электромагнитное излучение. Радиоактивность возникает, когда радиус ядра больше радиуса действия сильных взаимодействий (расстояний порядка 1 фм.
Существуют три основные формы радиоактивного распада:
Альфа-распад происходит, когда ядро испускает альфа-частицу — ядро атома гелия, состоящее из двух протонов и двух нейтронов. В результате испускания этой частицы возникает элемент с меньшим на два атомным номером.
Бета-распад происходит из-за слабых взаимодействий, и в результате нейтрон превращается в протон или наоборот. В первом случае происходит испускание электрона и антинейтрино, во втором — испускание позитрона и нейтрино. Электрон и позитрон называют бета-частицами. Бета-распад увеличивает или уменьшает атомный номер на единицу.
Гамма-излучение происходит из-за перехода ядра в состояние с более низкой энергией с испусканием электромагнитного излучения. Гамма-излучение может происходить вслед за испусканием альфа- или бета-частицы после радиоактивного распада.
Каждый радиоактивный изотоп характеризуется периодом полураспада, то есть временем, за которое распадается половина ядер образца. Количество оставшихся ядер уменьшается экспоненциально — вдвое за каждый период полураспада. Например, по прошествии двух периодов полураспада в образце останется только 25 % ядер исходного изотопа.
Радиоактивный распад играет важную роль в жизни организмов и в современных методах их исследования. Во-первых. разные виды ионизирующего излучения оказывают воздействие на все живые клетки, являются важным источником мутаций и других поверждений макромолекул. Во-вторых, метод меченых атомов (радиоизотопный метод) широко использщуется для исследования биохимических и молекулярно-биологических процессов, происходящих в клетках. В-третьих, в медицине (в особенности в онкологии) широко используются методы радиотерапии. Наконец, только с появлением радиоизотопного анализа появилась возможность определять абсолютный возраст горных пород, что играет важную роль в геологии и палеонтологии (см.[[25]]).
Валентность[править]
Валентность (от лат. valens — имеющий силу) — способность атомов химических элементов образовывать химические связи с атомами других элементов. В свете строения атома валентность — это способность атомов отдавать или присоединять определенное число электронов. В соединениях, образованных при помощи ионных связей, валентность атомов определяется числом присоединенных или отданных электронов. В соединениях с ковалентными связями валентность атомов определяется числом образовавшихся «общих» электронных пар.
Однако в настоящее время весьма затруднительно найти единую меру для характеристики способности атома к образованию химической связи. Существуют разные количественные характеристики способности атомов соединяться друг с другом: понятие валентности (ковалентности), понятие степени (состояния) окисления и понятие координационного числа.
Валентности некоторых химических элементов
Водород, калий, натрий, хлор, фтор — I.
Кислород, кальций, магний — II
Алюминий, хром — III.
Углерод в органических соединениях — IV.
Валентные электроны и валентность[править]
В химии валентными электронами называют электроны, находящиеся на внешней, или валентной, оболочке атома. Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановителя) в реакциях с другими элементами. И наоборот, чем больше валентных электронов содержится в атоме химического элемента, тем легче он приобретает электроны (проявляет свойства окислителя) в химических реакциях при прочих равных условиях. Полностью заполненные внешние электронные оболочки имеют инертные газы, которые проявляют минимальную химическую активность. Периодичность заполнения электронами внешней электронной оболочки определяет периодическое изменение химических свойств элементов в таблице Менделеева.
Валентность элемента часто совпадает с числом валентных электронов (например, у щелочных металлов 1 валентный электрон, и валентность у них всегда I, у щелочноземельных металлов) 2 валентных электрона, и валентность у них II) или с числом электронов, которых не хватает до заполнения внешнего уровня (например, у галогенов до заполнения внешнего уровня не хватает одного электрона, и валентность у них I).
У части элементов встречается переменная валентность — в зависимости от того, с какими элементами он вступает в соединения и какие молекулы при этом образуются. Так, азот может иметь валентности I, II, III, IV и V (а степени окисления — −3, −2, −1, +1, +2, +3, +4, +5).
Рассмотрение причин этого выходит за рамки данного учебника. Интересующиеся этой темой могут воспользоваться электронным учебником химиии [26]
Электроотрицательность[править]
Электроотрицательность (χ) — фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.
Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A—B (A, B — символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A—A и B—B. В настоящее время для определения электроотрицательностей атомов существует много различных методов, результаты которых хорошо согласуются друг с другом, за исключением относительно небольших различий, и во всяком случае внутренне непротиворечивы.
Первая и широко известная шкала относительных атомных электроотрицательностей Полинга охватывает значения от 0,7 для атомов цезия до 4,0 для атомов фтора. Фтор — наиболее электроотрицательный элемент, за ним следует кислород (3,5) и далее азот и хлор (3,0). Активные щелочные и щёлочноземельные металлы имеют наименьшие значения электроотрицательности, лежащие в интервале 0,7—1,2, а галогены — наибольшие значения, находящиеся в интервале 4,0—2,5. Электроотрицательность типичных неметаллов находится в середине общего интервала значений и, как правило, близка к 2 или немного больше 2. Электроотрицательность водорода принята равной 2,1. Для большинства переходных металлов значения электроотрицательности лежат в интервале 1,5—2,0. Близки к 2,0 значения электроотрицательностей тяжёлых элементов главных подгрупп. Существует также несколько других шкал электроотрицательности, в основу которых положены разные свойства веществ. Но относительное расположение элементов в них примерно одинаково.
Молекулы[править]
Моле́кула (новолатинское molecula, уменьшительное от moles} — масса) — наименьшая частица вещества, несущая его химические свойства. Молекула состоит из двух или более атомов, характеризуется количеством входящих в неё атомных ядер и электронов, а также определённой структурой.
Нередко (особенно в физике) говорят про одноатомные молекулы инертных газов или идеального газа. Нужно иметь в виду, что далеко не все вещества состоят из молекул!
Обычно подразумевается, что молекулы нейтральны (не несут электрических зарядов) и не несут неспаренных электронов (все валентности насыщены); заряженные молекулы называют ионами, молекулы с мультиплетностью, отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) — радикалами.
Молекулы, образованные сотнями или тысячами атомов, называются макромолекулами. Особенности строения молекул определяют физические и химические свойства вещества, состоящего из этих молекул.
Молекулы состоят из атомов, расположение которых в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула).
Химические формулы
Хими́ческая фо́рмула — отражение информации о составе и структуре веществ с помощью химических знаков, чисел (индексов) и разделяющих знаков — скобок.
В настоящее время различают следующие виды химических формул:
Простейшая формула. Может быть получена опытным путем через определение соотношения химических элементов в веществе с применением значений атомной массы элементов. Так, простейшая формула воды будет H2O, а простейшая формула бензола СН. Атомы в формулах обозначаются знаками химических элементов, а относительное их количество — числами в формате нижних индексов.
Истинная формула. Может быть получена, если известна молекулярная масса вещества. Истинная формула воды Н2О, что совпадает с простейшей. Истинная формула бензола С6Н6, что отличается от простейшей. Истинные формулы также называют брутто-формулами или эмпирическими. Они отражают состав, но не структуру молекул вещества.
Рациональная формула. В рациональных формулах выделяются группы атомов, характерные для классов химических соединений. Например, для спиртов выделяется группа -ОН. При записи рациональной формулы такие группы атомов заключаются в круглые скобки (ОН). Количество повторяющихся групп обозначаются числами в формате нижних индексов, которые ставятся сразу за закрывающей скобкой. Квадратные скобки применяются для отражения структуры комплексных соединений. Например, К4[Co(CN)6] — гексацианокобальтоат калия. Рациональные формулы часто встречаются в полуразвернутом виде, когда часть одинаковых атомов показывается по отдельности для лучшего отражения строения молекулы вещества.
Структурная формула. В графическом виде показывает взаимное расположение атомов в молекуле. Химические связи между атомами обозначаются линиями. Различают двухмерные (2D) и трехмерные (3D) формулы. Двухмерные представляют собой отражение структуры вещества на плоскости. Трехмерные позволяют наиболее близко к теоретическим моделям строения вещества представлять его состав, взаимное расположение, связи и расстояния между атомами.
Пример: Этанол (этиловый спирт):
Простейшая формула С2Н6О
Истинная, эмпирическая, или брутто-формула: С2Н6О
Рациональная формула: С2Н5ОН
Рациональная формула в полуразвернутом виде: СН3СН2ОН
Структурная формула[править]
Структурная формула этанола (2D):
Flat structure of ethanol
Видя перед собой структурную формулу этанола, мы можем определить валентности входящих в его состав атомов. Число отходящих от атома линий (химических связей) — это и есть его валентность.
О других способах представления структурных формул см. Structural formula
Отнюдь не все химические вещества построены из молекул. Так, многие вещества имеют ионную (NaCl — поваренная соль), металлическую (Fe — железо) или атомную (С — углерод, например, алмаз или графит) кристаллическую решетку (см.[[27]]). Эти вещества не состоят из молекул! (Есть и вещества с молекулярной кристаллической решеткой — например, иод (I2). В определенных условиях можно получить кристаллы белков или ДНК).
В итоге мы видим, что первоначальное определение (мельчайшая частица вещества, сохраняющая его (химические) свойства — весьма неточное. Отдельная молекула не имеет ни части химических, ни, тем более, физических свойств вещества, а некоторые вещества (естественно. имеющие химические свойства) «не имеют» молекул… Было предложено более точное определение: «Молекула — электронейтральная частица вещества, представляющая собой замкнутую совокупность конечного числа атомов, связанных между собой силами ковалентной связи и образующих определённую структуру.»
Молекулы являются объектом изучения теории строения молекул, квантовой химии, аппарат которых активно использует достижения квантовой физики, в том числе релятивистских её разделов. Также в настоящее время развивается такая область химии, как молекулярный дизайн. Для определения строения молекул конкретного вещества используются разные методы: электронная спектроскопия, колебательная спектроскопия, ядерный магнитный резонанс и электронный парамагнитный резонанс и многие другие. Однако единственными прямыми методами в настоящее время являются дифракционные методы: рентгеноструктурный анализ и дифракция нейтронов.
[[28]] — Строение молекул (Наглядная биохимия)
Статья «Молекула» в Физической энциклопедии
Химические реакции[править]
Химическая реакция — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число и изотопный состав химических элементов.
Важнейшая особенность химических реакций состоит в том, что в ходе них атомы не появляются, не исчезают и не превращаются друг в друга. Это означает. что сколько атомов каждого из элементов было в начале реакции, столько же их останется в конце. На этом основано составление химических уравнений.
Порядок составления химического уравнения
1. Определяем, какие вещества вступают (исходные) в реакцию и какие получаются в её результате (продукт реакции).
Например: простое вещество медь Cu при прокаливании в кислороде O2 реагирует с ним, в результате чего получается оксид меди CuO — сложное вещество.
2. Химическое уравнение состоит из двух частей.
В левой части пишут формулы исходных веществ (реагентов), в правой — полученные вещества (продукты реакции). Между исходными веществами и продуктами реакции ставят знак «превращения» (→). Если в левой или правой стороне по несколько веществ, между нами ставят плюс (+).
Пример: Cu + O2 (исходные вещества) → CuO (продукт реакции).
3. Расставляем коэффициенты так, чтобы число атомов каждого элемента в обеих частях уравнения было одинаково (подбор коэффициентов; уравнивание).
Пример: 2Cu + O2 → 2CuO
Некоторые химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно. Другие реакции начинаются только при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Самопроизвольное превращение веществ осуществляется при условии, что они обладают энергией, достаточной для преодоления потенциального барьера, разделяющего исходное и конечное состояния системы (см. Энергия активации).
Все химические реакции сопровождаются тепловыми эффектами. При разрыве химических связей в реагентах выделяется энергия, которая, в основном, идет на образование новых химических связей. В некоторых реакциях энергии этих процессов близки, и в таком случае общий тепловой эффект реакции приближается к нулю. В остальных случаях можно выделить
экзотермические реакции, которые идут с выделением тепла, например, горение водорода и другие реакции горения, и
эндотермические реакции, в ходе которых тепло поглощается из окружающей среды.
Тепловой эффект реакции (энтальпию реакции, ΔH), часто имеющий очень важное значение, можно вычислить по закону Гесса, если известны энтальпии образования реагентов и продуктов. Когда сумма энтальпий продуктов меньше суммы энтальпий реагентов (ΔrH < 0), наблюдается выделение тепла, в противном случае (ΔrH > 0) — поглощение [29].
В живых клетках некоторые реакции протекают с поглощением энергии (эндергонические реакции), а некоторые — с выделением энергии (экзергонические). Реакции, идущие с поглощением энергии, не могут протекать самопроизвольно — они сопрягаются в клетках с экзергоническими реакциями (см.Обмен веществ и превращения энергии в клетках
См. также
[[30]] Химические реакции (Наглядная биохимия)
[[31]] Энергетика (Наглядная биохимия)
Типы химической связи[править]
Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.
История
Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861 году. Также он заложил основы теории химического строения. Главные положения этой теории следующие:
Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.
Соединение атомов происходит в соответствии с валентностью.
Свойства веществ зависят не только от их состава, но и от «химического строения», то есть от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой.
Основные типы химической связи —
Ковалентная связь
Ионная связь
Водородная связь
Металлическая связь
Ковалентной связью называется химическая связь, образующаяся за счёт обобществления атомами своих валентных электронов. Обязательным условием образования ковалентной связи является перекрывание атомных орбиталей (АО), на которых расположены валентные электроны. Различают две основные разновидности ковалентной связи:
Ковалентная неполярная связь образуется между атомами неметалла одного и того же химического элемента. Такую связь имеют простые вещества, например О2; N2; C12.
Ковалентная полярная связь образуется между атомами различных неметаллов (например, она присутствует в молекулах CO, NH3, H2O).
В случае, например, с HCl общая электронная плотность оказывается смещенной в сторону хлора, который обладает большей электроотрицательностью, в результате чего на атоме хлора возникает частичный отрицательный заряд, а на атоме водорода — частичный положительный.
В простейшем случае перекрывание двух АО приводит к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО. Обобществленные электроны располагаются на более низкой по энергии связывающей МО/
Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом.
Так как ионная связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (разность ЭО > 1.7 по Полингу), то общая электронная пара полностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:
А• + •В = А+ + [:В]-
ионы
Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %.
Ион натрия, окруженный в растворе молекулами воды
Ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.
Для соединений с ионной связью характерна хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности ионов. При этом диполи растворителя притягиваются к заряженным ионам, и, в результате броуновского движения, «растаскивают» кристаллическую решетку вещества вещества на ионы и окружают их, не давая соединиться вновь. В итоге получается раствор, в котором ионы окружены диполями растворителя.
Водородная связь[править]
Атом водорода, соединенный с атомом сильно электроотрицательного элемента, способен к образованию еще одной химической связи с другим сильно электроотрицательным атомом. Эта связь называется водородной. Результатом таких взаимодействий являются комплексы RA-H•••BR различной степени стабильности, в которых атом водорода выступает в роли мостика, связывающего молекулы или их фрагменты RA и BR.
В образовании водородной связи принимают участие атомы водорода -ОН, =NH и -SH-гpупп (доноров водородной связи) и атомы-акцепторы (например, О, N или S), имеющие свободную пару электронов.
Возникновение водородной связи можно в первом приближении объяснить действием электростатических сил. Атом с большой электроотрицательностью, например, фтор в молекуле HF смещает на себя электронное облако, приобретая значительный эффективный отрицательный заряд, а ядро атома водорода (протон) почти лишается электронного облака и приобретает эффективный положительный заряд. Между протоном атома водорода и отрицательно заряженным атомом фтора соседней молекулы возникает электростатическое притяжение, что и приводит к образованию водородной связи.
Энергия водородной связи составляет 10-40 кДж/моль, что значительно (в 10-40 раз) меньше энергии обычной ковалентной связи. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, то есть их объединение в димеры или полимеры. Именно ассоциация молекул служит причиной аномально высоких температур плавления и кипения таких веществ, как фтороводород, вода, аммиак.
Водородная связь в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты. Часто в макромолекулах образуются многочисленные внутримолекулярные водородные связи, которые определяют, например, вторичную структуру белков.
Интересные факты
Именно водородные связи в значительной степени определяют высокую упорядоченность строения и чрезвычайно высокую прочность кевлара.
В. В. Москва. Водородная связь в органической химии. Соросовский образовательный журнал, 11999,N 2, с.58-64 [32]
Ионы. Кислоты и основания[править]
Ио́н (греч. ιόν — «идущий») — одноатомная или многоатомная электрически заряженная частица, образующаяся в результате потери или присоединения одного или нескольких электронов атомами или молекулами. Заряд иона кратен заряду электрона.
Понятие и термин ион ввёл в 1834 г Майкл Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов.
Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду) — анионами.
В виде самостоятельных частиц они встречаются во всех агрегатных состояниях вещества — в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме.
Являясь химически активными частицами, ионы вступают в реакции с атомами, молекулами и между собой. В растворах ионы образуются в результате электролитической диссоциации и обусловливают свойства электролитов.
Цвиттер-ион (биполярный ион) (от нем. Zwitter — гибрид, гермафродит) — молекула, которая, являясь в целом электронейтральной, в своей структуре имеет части, несущие как отрицательный, так и положительный заряды, локализованные на разных атомах. Цвиттер-ионы относятся к полярным веществам и, как правило, обладают хорошей растворимостью в воде и слабой — в большинстве органических растворителей. Многие органические молекулы (например, аминокислоты и белки) представляют собой цвиттер-ионы.
Существует 3 теории кислот и оснований — их создали Сванте Аррениус, Й. Н. Брёнстед и Г. Н. Льюис.
Теория Аррениуса
Согласно теории Аррениуса, кислоты- это вещества, при электролитической диссоциации в водном растворе образующие катионы водорода Н+ и анионы кислотного остатка. Основания — это вещества, в водном растворе подвергающиеся электролитической диссоциации с образованием катионов металла и гидроксид-анионов ОН- Эту теорию обычно проходят в школе на уроках химии, хотя она сильно устарела. Для нас такое определение кислоты и основания не подходит хотя бы потому, что многие органические вещества являются основаниями (имеют щелочные свойства), хотя и не содержат никаких катионов металлов.
Теория Бренстеда
Согласно теории Бренстеда, кислота — это соединение, способное отдавать основанию катионы водорода Н+ (является донором Н+). Основания — это соединения, способные принимать у кислоты катионы водорода Н+ (является акцептором Н+). Таким образом, в этой теории одно и то же вещество в зависимости от взаимодействия может быть и кислотой, и основанием. Например, вода при взаимодействии с протоном
H2O + H+ = H3О+
является основанием, а реагируя с аммиаком
NH3 + H2O = NH4+ + OH-,
является кислотой.
Эта теория также отчасти устарела, но для целей данного учебника её вполне можно принять. Итак,
кислота — вещество, способное в водных растворах отдавать протоны,
основание — вещество, способное в водных растворах принимать (присоединять) протоны.
Теория кислот и оснований Льюиса
В теории Льюиса было еще более расширено понятие кислоты и основания. Кислота — это молекула, имеющая вакантные электронные орбитали, вследствие чего она способна принимать электронные пары, например BF3, AlCl3. Основание — это молекула, способная быть донором электронных пар. Например, основания Льюиса — все анионы, аммиак и амины, вода, спирты, галогены. Именно эта теория лежит в основе современных представлений о свойствах веществ и ходе химических реакций.
Водородный показатель (рН) среды показывает концентрацию в ней протонов[править]
Водоро́дный показа́тель', pH (произносится «пэ аш»), — это мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность. рН вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр:
{\displaystyle {\mbox{pH}}=-\lg \left[{\mbox{H}}^{+}\right]\!} {\displaystyle {\mbox{pH}}=-\lg \left[{\mbox{H}}^{+}\right]\!}
В чистой воде при 25 °C молярные концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH-]) одинаковы и составляют 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH-] и составляет 10−14 моль²/л² (при 25 °C).
Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH-] говорят, что раствор является кислым, а при [OH-] > [H+] — щелочным.
Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.
{\displaystyle {\mbox{pH}}=-\lg \left[{\mbox{H}}^{+}\right]\!} {\displaystyle {\mbox{pH}}=-\lg \left[{\mbox{H}}^{+}\right]\!}
Итак, рН — показатель концентрации ионов водорода (протонов) в растворе. При рН = 7 среда считается нейтральной. При этом концентрация протонов равна 10−7 моль/л. Если рН < 7, то среда кислая. Например, рН желудочного сока — примерно 1,5-2. При рН = 2 концентрация ионов водорода — 10 −2 моль/л, то есть в 10.000 раз больше, чем при рН = 7. Кислотность кишечного сока — около 8-8,5. При рН = 8 концентрация протонов — 10−8 моль/л. Итак, концентрация ионов водорода в желудке и кишечнике отличается в 100.000 раз.
Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред.
