- •Общая электротехника и электроника
- •Основные элементы электрической цепи. Последовательное, параллельное и смешанное соединение приемников.
- •Источники и приемники электрической энергии. Закон Ома. Закон Джоуля-Ленца. Законы Кирхгофа.
- •1.1 Методы анализа, основанные на законах Ома и законах Кирхгофа
- •Неразветвленные и разветвленные цепи синусоидального тока. Резонансные явления в электрических цепях.
- •Переходные процессы в электрических цепях. Классический метод расчета переходных процессов в простейших электрических цепях с индуктивным и емкостным накопителями энергии.
- •5.1 Причины возникновения переходных процессов.
- •Устройство и принцип действия машины переменного тока.
- •1.2. Конденсаторы.
- •1.3. Катушки индуктивности
- •1.4. Полупроводниковые приборы
- •Условные обозначения, принцип действия, характеристики, разновидности и назначение полупроводниковых диодов, транзисторов, тиристоров
- •Виды источников питания: выпрямители, сглаживающие фильтры, стабилизаторы напряжения, инверторы.
- •Метрологические характеристики средств измерений. Погрешность средств измерений. Механизмы основных показывающих измерительных приборов.
- •1) По способу выражения:
- •2) По причинам и условиям возникновения:
- •3) По характеру изменений:
- •4) По зависимости от измеряемой величины:
- •5) В зависимости от влияния характера изменения измеряемой величины:
1.1 Методы анализа, основанные на законах Ома и законах Кирхгофа
Закон Ома устанавливает зависимость между напряжением и током на пассивной ветви, а также позволяет определить ток по известным потенциалам на концах ветви с источником напряжения.
Законы Кирхгофа применяют для нахождения токов в ветвях линейных и нелинейных схем при любом законе изменения во времени токов и напряжений.
Метод эквивалентных преобразований. При эквивалентных преобразований отдельные участки электрической цепи заменяются более простыми. Эквивалентность преобразования состоит в том, что токи и напряжения в непреобразованной части схемы не изменяются.
Последовательное упрощение схемы продолжается до ее преобразования в одноконтурную схему, после чего для расчета используется закон Ома.
Метод эквивалентных преобразований используется для нахождения внутреннего сопротивления эквивалентного генератора.
При помощи метода эквивалентных преобразований облегчают расчет расчет нелинейной цепи, упростив линейную часть цепи эквивалентными преобразованиями.
Принято пользоваться приведенным ниже алгоритмом метода законов Кирхгофа.
1. Произвольно выбирают положительные направления токов в ветвях и обозначают их на схеме.
2. Составляют уравнения по первому закону Кирхгофа: на одно уравнение меньше числа узлов (для последнего узла уравнение будет зависимым от предыдущих уравнений).
3. Выбирают независимые (главные) контуры и направление их обхода. Удобно для всех контуров выбрать одинаковое направление обхода.
4. Записывают уравнения по второму закону Кирхгофа для выбранных контуров.
Решая полученную систему уравнений, определяют искомые токи.
1.2 Метод наложения
Метод наложения основан на свойстве линейности электрических цепей. Метод наложения справедлив только для линейных цепей. Метод наложения применяется для определения токов в ветвях схемы с несколькими источниками.\
1.3 Метод контурных токов
В методе контурных токов за основные неизвестные величины принимают контурные токи, которые замыкаются только по независимым контурам (главным контурам). Контурные токи находят, решая систему уравнений, составленную по второму закону Кирхгофа для каждого контура. По найденным контурным токам определяют токи ветвей схемы.
1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)
В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).
Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.
Теорему об активном двухполюснике. Метод эквивалентного генератора. Двухполюсником называется часть электрической цепи любой сложности и произвольной конфигурации, выделенная относительно двух зажимов (двух полюсов).
Двухполюсник, не содержащий источников энергии или содержащий скомпенсированные источники (суммарное действие которых равно нулю), называется пассивным. Если в схеме двухполюсника имеются нескомпенсированные источники, он называется активным.
Активный
двухполюсник ведет себя как генератор.
Находящиеся внутри него нескомпенсированные
источники отдают энергию во внешнюю
цепь. Можно попытаться подобрать источник
энергии с ЭДС ЕЭ и внутренним сопротивлением
RЭ, который будет эквивалентен
двухполюснику, то есть будет создавать
во внешней цепи тот же самый ток
Метод эквивалентного генератора основан на теореме об эквивалентном источнике (теорема Тевенена) – активном двухполюснике.
Теорема Тевенена для линейных электрических цепей утверждает, что любая электрическая цепь, имеющая два вывода и состоящая из комбинации источников напряжения, источников тока и резисторов (сопротивлений), с электрической точки зрения эквивалентна цепи с одним источником напряжения E и одним резистором R, соединенными последовательно.
В методе эквивалентного генератора (метод эквивалентного источника ЭДС) сложную разветвленную схему рассматривают как активный двухполюсник по отношению к ветви R с искомым током I, который определяют по выражению
I = EЭГ/ (RЭГ + R),
где
EЭГ = Uхх – ЭДС эквивалентного генератора равная напряжению холостого хода между зажимами подключенного пассивного элемента R в ветви с искомым током;
RЭГ = Rвх – сопротивление эквивалентного генератора равное входному сопротивлению пассивного двухполюсника относительно разомкнутых зажимов.
Алгоритм метода эквивалентного генератора (метод эквивалентного источника ЭДС)
1. Определяют напряжение холостого хода Uхх. Для этого ветвь с искомым током разрывают, удаляя сопротивление, и оставляют ЭДС в этой ветви, если она имеется.
2. Задаются направлением токов в ветвях оставшейся схемы после размыкания ветви. Записывают выражение для напряжения Uхх между разомкнутыми зажимами по второму закону Кирхгофа. В это уравнение войдет ЭДС разомкнутой ветви.
3. Рациональным методом рассчитываются токи в схеме, вошедшие в выражение напряжения Uхх.
4. Определяют входное сопротивление двухполюсника относительно разомкнутых зажимов.
5. В соответствии с методом эквивалентного генератора (метод эквивалентного источника ЭДС), определяют искомый ток ветви.
Нелинейные цепи постоянного тока.
Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент.
Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками.
Нелинейные электрические цепи постоянного тока
Нелинейные свойства таких цепей определяет наличие в них нелинейных резисторов.
В связи с отсутствием у нелинейных резисторов прямой пропорциональности между напряжением и током их нельзя охарактеризовать одним параметром (одним значением ). Соотношение между этими величинами в общем случае зависит не только от их мгновенных значений, но и от производных и интегралов по времени.
