- •Рецензенты:
- •2. Нервно-мышечная физиология.
- •2.1. Понятие о двигательном аппарате. Виды и функции двигательных единиц (ед). Композиция мышц
- •2.2. Физиологические свойства мышц. Электрические явления в возбудимых тканях. Методы измерения возбудимости
- •2.3. Теория мышечного сокращения. Сила мышц. Факторы, определяющие силу мышц.
- •Вопросы для самоконтроля
- •3. Центральная нервная система.
- •3.1. Функции цнс. Рефлекторный механизм деятельности цнс. Понятие о нервном центре. Свойства нервных центров.
- •3.2. Первичные механизмы координации рефлексов.
- •3.3. Торможение в центральной нервной системе.
- •3.4. Строение и функции вегетативной нервной системы.
- •Вопросы для самоконтроля
- •4. Физиология сенсорных систем.
- •4.1. Понятие о сенсорных системах. Учение и.П.Павлова об анализаторах. Общий план организации и функции сенсорных систем.
- •Структура и деятельность сенсорных систем весьма сложные. Возбуждение, возникшее в каком-либо рецепторе, проводится в высшие отделы центральной нервной системы несколькими путями.
- •4.2. Классификация сенсорных систем Основные свойства анализаторов. Общая характеристика рецепторов.
- •4.3. Значение деятельности сенсорных систем в спорте.
- •Что такое «сенсорные системы»? Каково их биологическое значение?
- •Перечислите основные функции анализаторов?
- •Какова общая структура сенсорных систем?
- •5. Высшая нервная деятельность.
- •5.1. Предмет и методы внд. Учение об условных рефлексах, механизмы образования условных рефлексов. Торможение в коре больших полушарий головного мозга.
- •5.2. Учение о типах внд. Общие представления о функциональной системе п.К.Анохина.
- •Вопросы для самоконтроля
- •6.1. Понятие о системе крови. Основные функции крови . Состав и физико-химические свойства крови. Группы крови.
- •Лейкоцитарная формула здорового человека (в %)
- •В развитии миогенного лейкоцитоза выделяют 3 фазы:
- •Основные физико-химические свойства крови:
- •Группы крови.
- •6.2. Регуляция системы крови
- •Кровообращение.
- •7.1. Понятие о кровообращении. Физиологические свойства сердечной мышцы. Специфика сердечного сокращения.
- •7.2. Давление крови и факторы, его обуславливающие. Виды давления.
- •Уровень давления определяется следующими факторами:
- •7.3. Механизмы регуляции сердечной деятельности и сосудистого тонуса.
- •Вопросы для самоконтроля
- •8. Дыхание
- •8.1. Дыхание и его функции. Этапы дыхания. Механизм обмена газов в легких и тканях. Транспорт кислорода и углекислого газа. Дыхательный центр.
- •8.2. Рефлекторные механизмы регуляции дыхания. Регуляция дыхания при мышечной работе.
- •Механизмы «рабочей» настройки дыхательного центра.
- •Механизмы саморегуляции дыхания.
- •Вопросы для самоконтроля
- •9. Обмен энергии. Теплорегуляция.
- •9.1. Понятие об энергообмене. Методы исследования энерготрат.
- •9.2. Понятие о теплорегуляции.
- •Вопросы для самоконтроля
- •Пищеварение в полости рта
- •Пищеварение в желудке
- •3. Пищеварение в кишечнике
- •Вопросы для самоконтроля
- •11. Общая характеристика выделительных процессов. Механизм мочеобразования.
- •Вопросы для самоконтроля
- •13. Возрастная физиология
- •13.1. Понятие онтогенеза и закономерности его течения. Факторы, определяющие возрастное развитие. Теории механизмов онтогенеза
- •13.2. Показатели физического развития и полового созревания. Акселерация и ретардация ростовых процессов
- •13.3. Определение биологического возраста
- •14.1 Понятие о спортивной физиологии. Задачи спортивной физиологии. Методы исследований в спортивной физиологии.
- •14.2 Классификация физических упражнений и видов спорта.
- •14.3 Характеристика динамической циклической работа различной относительной мощности
- •Вопросы для самоконтроля
- •15.1 Понятие о физической работоспособности. Факторы, обусловливающие физическую работоспособность.
- •15.2. Динамика работоспособности в различные периоды выполнения физической нагрузки.
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •17.1 Понятие утомления. Биологическое значение утомления. Теории и механизмы развития утомления.
- •1. Повышенная афферентация от работающих мышц может изменять функциональное состояние центральной нервной системы.
- •2. Выраженные изменения химизма мышечной ткани.
- •17.2. Общее представление о восстановлении. Механизмы восстановления и факторы, влияющие на его течение.
- •17.3. Закономерности течения восстановительных процессов.
- •Вопросы для самоконтроля
- •18.1. Рефлекторные механизмы организации произвольных движений. Стадии формирования двигательного навыка.
- •Вопросы для самоконтроля
- •19.1. Физиологическая характеристика силы, быстроты и скоростно - силовых возможностей.
- •Вопросы для самоконтроля
- •Вопросы для самоконтроля
- •21.1. Гипокинезия, ее влияние на функции организма
- •21.2. Механизмы влияния физических упражнений на здоровье и работоспособность
- •21.3. Особенности воздействия различных физических упражнений на организм человека
- •Вопросы для самоконтроля
- •22.1. Характеристика процесса компенсации функций как одного из видов адаптации. Эффекты процессов компенсации. Понятия о полной и частичной компенсации.
- •22.2. Характеристика внутриклеточных процессов компенсации и компенсации при нарушении процессов регуляции.
- •22.3. Структурное обеспечение компенсации функций. Механизмы компенсации на уровне: ткань, орган, система.
- •Повреждение
- •22.4. Стадии компенсаторного процесса. Способы оценки нарушений физиологических функций.
- •22.5. Компенсация нарушенных физиологических функций методами традиционной медицины: иглорефлексотерапия, массаж.
- •Вопросы для самоконтроля
- •Рекомендуемая литература
- •Основы обшей и спортивной физиологии компенсация нарушенных функций Учебное издание
- •400005, Г. Волгоград, пр. Ленина,78
9.2. Понятие о теплорегуляции.
Температура тела - комплексный показатель теплового состояния организма человека, отражающий сложные отношения между теплопродукцией (выработкой тепла) различных органов и тканей, и теплообменом между ними и внешней средой.
У здорового человека температура тела является постоянной с небольшими колебаниями в утренние и вечерние часы (36-37° С). Утром температура ниже на несколько десятых градуса, а вечером выше. Считается, что она не должна превышать 37°С, а колебания находятся в пределах от 0,3 до 1° С.
Изотермия — постоянство температуры тела — имеет для организма большое значение, т. к. она, во-первых, обеспечивает независимость обменных процессов в тканях и органах от колебаний температуры окружающей среды; во-вторых, обеспечивает температурные условия для оптимальной активности ферментов.
Температура отдельных участков тела человека различна, что связано с неодинаковыми условиями теплопродукции и отдачи тепла. Температурным ядром тела являются все органы грудной и брюшной полости, а также центральная нервная система (37 – 38 ° С). Ядро окружено изолирующей оболочкой – слоем более поверхностно расположенных тканей (от 30°С до 36°С). Физиологический предел колебаний этой температуры составляет 1,5°С. Изменение температуры крови и внутренних органов у человека на 2 – 2,5°С от среднего уровня сопровождается нарушением физиологических функций, а температура тела выше 43°С практически несовместима с жизнью человека. В течение суток температура тела человека колеблется: минимальная в 3-4 часа, максимальная — в 16-18 часов.
Поддержание постоянства температуры тела осуществляется по принципу саморегуляции, путем формирования функциональной системы терморегуляции. Системообразующим фактором (константой) этой функциональной системы является температура крови в правом предсердии (37О С). Рефлекторные изменения процессов терморегуляции происходят при раздражении тепловых и холодовых рецепторов, расположенных в кожных покровах, в слизистых оболочках дыхательных путей, во внутренних органах, в сосудах, в различных отделах ЦНС (гипоталамусе, ретикулярной формации, продолговатом и спинном мозге, двигательной коре и др.). Особенно большое количество центральных терморецепторов, которые реагируют на изменение температуры крови, находится в гипоталамусе.
Процессы, связанные с образованием тепла в организме, объединяют понятием химическая терморегуляция, а процессы, обеспечивающие отдачу тепла — физическая терморегуляция.
Химическая терморегуляция или образование тепла в организме происходит вследствие непрерывно совершающихся экзотермических реакций окисления белков, жиров, углеводов, а также гидролиза АТФ, которые протекают во всех органах и тканях, но с различной интенсивностью. Наиболее интенсивное образование тепла происходит в мышцах. Незначительная двигательная активность приводит к повышению теплообразования на 50-80%, а тяжелая мышечная работа — на 400-500%. В процессах теплообразования, кроме мышц, значительную роль играют печень и почки. При охлаждении тела теплопродукция в печени возрастает.
Классификация механизмов теплопродукции:
1. Сократительный термогенез – продукция тепла в результате сокращения скелетных мышц: а) произвольная активность локомоторного аппарата; б) терморегуляционный тонус; в) холодовая мышечная дрожь, или непроизвольная ритмическая активность скелетных мышц.
2. Несократительный термогенез, или недрожательный термогенез (продукция тепла в результате активации гликолиза, гликогенолиза и липолиза): а) в скелетных мышцах (за счёт разобщения окислительного фосфорилирования); б) в печени; в) в буром жире; г) за счёт специфико-динамического действия пищи.
Физическая терморегуляция осуществляется путем изменения отдачи тепла организмом.
Теплоотдача осуществляется следующими путями: излучением (радиацией); проведением (кондукцией); конвекцией; испарением.
Теплоизлучение (радиация) обеспечивает отдачу тепла организмом окружающей его среде при помощи инфракрасного излучения с поверхности тела..
Теплопроведение происходит при контакте с предметами, температура которых ниже температуры тела.
Конвекция обеспечивает отдачу тепла прилегающему к телу воздуху или жидкости.
Испарение воды с поверхности кожи и со слизистых оболочек дыхательным путей в процессе дыхания ведёт к отдаче тепла.
Во время мышечной работы температура повышается – рабочая гипертермия. Подъём температуры при мышечной работе имеет свой биологический смысл: возрастают проводимость, возбудимость, лабильность нервных центров, снижается вязкость мышц, улучшается активность ряда ферментов. Стационарный уровень температуры зависит от мощности работы: чем она выше, тем выше и этот уровень.
В отличие от температуры ядра, средняя кожная температура не зависит от мощности выполняемой работы, а находится в прямой связи с внешней температурой. Постепенное повышение кожной температуры при работе происходит за счёт увеличения температуры некоторых участков кожи, в частности над работающими мышцами. Снижение кожной и повышение центральной температуры увеличивают тепловой градиент между ядром и поверхностью тела, что облегчает потерю тепла при работе.
Таким образом, при мышечной работе организм использует для усиления теплоотдачи более эффективный способ – потоиспарение.
Скорость потоотделения при постоянной мощности работы увеличивается с повышением внешней (и кожной) температуры и не связана с температурой ядра тела.
Вопросы для самоконтроля
Дайте понятие об обмене веществ и энергии.
Назовите и охарактеризуйте методы исследования энерготрат.
Что такое основной обмен энергии?
Дайте определение понятиям кислородный долга и МПК.
Укажите величины расхода энергии при различных видах трудовой деятельности
Что такое температурное ядро и оболочка?
В чём заключается химическая и физическая терморегуляция?
Каковы особенности терморегуляции при физической работе?
10. Общая физиология желез внутренней секреции
В регуляции жизнедеятельности организма важное значение имеют вещества высокой биологической активности, выделяемые специальными органами в кровоток и способными, несмотря на их, чрезвычайно малые концентрации в крови, вызывать значительные изменения в состоянии организма, в частности обмена веществ в нём. Эти вещества называются гормонами, а выделяющие их органы – эндокринными железами или железами внутренней секреции.
Железы внутренней секреции (эндокринные железы) не имеют протоков и выделяют секрет непосредственно в межклеточную жидкость, кровь, лимфу и церебральную жидкость.
Существуют два пути управления деятельностью эндокринных клеток:
Нервный (реализуется с помощью структур ЦНС);
Гуморальный (этот путь нервная система реализует через гипофиз, с помощью тропных гормонов).
Центральной для управления эндокринными функциями структурой нервной системы является гипоталамус. Этот отдел осуществляет оба пути управления, т.е. нервный и гипофизарный.
Биологическая роль эндокринной системы тесно связана с ролью нервной системы, они совместно координируют функции органов и систем органов.
Эндокринная система посредством гормонов выполняет три важнейшие функции: обеспечивает физическое, половое и умственное развитие; обеспечивает адаптацию активности физиологических систем; обеспечивает поддержание некоторых физиологических показателей на постоянном уровне – гомеостатическая функция.
По выраженности морфологической связи с ЦНС эндокринные железы делятся на: - центральные (гипоталамус, гипофиз, эпифиз); - периферические (щитовидная, половые железы и др.).
По функциональной зависимости от гипофиза, которая реализуется через его тропные гормоны на: - гипофизозависимые;- гипофизонезависимые.
Вещества, играющие важную роль в реализации гуморальной регуляции подразделяются на несколько групп:
Гормоны - вещества, выделяемые эндокринными железами или скоплением эндокринных клеток в кровь, и оказывающие специфическое действие на другие органы и ткани.
Гормоноподобные вещества (парагормоны, местные гормоны и т. д.) - вырабатываются клетками диффузной эндокринной и АПУД системами. Оказывают местное и общее действие. Гормоноиды выделяют, например, клетки желудочно-кишечного тракта (серотонин-хромофильные клетки), соединительной тканью (гепарин и гистамин - тучные клетки), почками (ренин), семенными пузырьками (простагландины) и т. д.
Нейрогормоны - вырабатываются нервными клетками гипоталамуса и секретируются в кровь, оказывая специфическое действие на органы и ткани.
Нейромедиаторы - вырабатываются нервными клетками, участвуют в передаче возбуждения в синапсах, после чего всасываются в кровь и оказывают специфическое действие на органы и ткани.
Нейромодуляторы - вырабатываются нервными клетками, регулируют процесс передачи возбуждения в синапсах.
Несмотря на то, что гормоны имеют различную химическую природу: белковую (пептидные, протеидные), липидную (стероидные) и аминокислотную, они характеризуются общими биологическими свойствами:
- дистантностью действия (гормоны, поступая в кровяное русло, могут оказывать влияние на весь организм и на органы ткани, расположенные вдали от той железы, где они образуются);
- высокой специфичностью (выражается в двух формах: 1) каждый гормон влияет на те органы и ткани, в клетках которых имеются специфические рецепторы (мишени): 2) результатом взаимодействия гормона с его рецепторов является строго определённые изменения в цепи обменных процессов, в активности регулирующих их ферментов;
- высокой биологической активностью - незначительные количества гормонов могут вызывать изменение функций организма;
- они оказывают действие только на сложные структуры клетки (клеточные мембраны, ферментные системы);
- быстрая разрушаемость. Гормоны сравнительно быстро разрушаются в тканях, в частности, в печени. Поэтому для поддержания достаточного количества гормонов в крови и обеспечения более длительного или непрерывного действия необходимо постоянное выделение их соответствующей железой.
- характер регулируемого процесса является важным фактором, определяющим интенсивность образования и выделения гормонов. Как только изменения, вызываемые каким-либо гормоном, достигают определённой величины, образование и выделение этого гормона уменьшается, а иногда увеличивается продукция гормона, действующего противоположно на этот процесс. И наоборот, снижение функции – увеличивает продукцию гормона.
Гормоны от места их секреции транспортируются кровью в следующих состояниях: - свободном; - связанном с белком (80%); - адсорбированном на форменных элементах крови.
Связанная или адсорбированная форма гормонов позволяет регулировать содержание гормонов по уровню их свободной фракции. Помимо этого, связанные гормоны - это их депо (физиологический резерв), переход из которого в свободную фракцию происходит по мере снижения их концентрации. Связанная форма гормонов защищена от действия ферментов. Комплексирование гормонов с белками препятствует фильтрации низкомолекулярных гормонов в почках и, следовательно, предотвращает их потери с мочой.
По функциональному признаку гормоны могут быть разделены на группы: - эффекторные - оказывают влияние непосредственно на объект-мишень; -тропные - регулируют выделение и синтез эффекторных гормонов (например, тиреотропный гормон); - либерины (релизинг-гормоны) и статины (ингибитор-гормоны) - стимулируют или тормозят, соответственно, процессы синтеза и выделения тройных гормонов, выделяющихся нервными клетками гипоталамуса, именно с их помощью ЦНС регулирует функции эндокринной системы.
Интенсивность выделения каждого гормона железой в данный момент регулируется в соответствии с потребностью организма в данном гормоне.
Существует несколько способов регуляции функций эндокринных желез.
Во-первых, через прямое влияние на клетки желез концентрации того вещества, уровень которого регулирует данный гормон. Например, выработка паратгормона, повышающего уровень кальция в крови, снижается при воздействии на клетки паращитовидных желез повышенных концентраций кальция. Или - усиление секреции инсулина возникает при повышении концентрации глюкозы в крови, протекающей через поджелудочную железу.
Во-вторых, опосредованно через нейрогормональные или гормональные механизмы, т. е. с участием других желез внутренней секреции.
В-третьих, при помощи прямых нервных влияний на секреторные клетки железы (наблюдаются только в мозговом веществе надпочечников и эпифизе). В остальных железах внутренней секреции нервные волокна регулируют в основном тонус кровеносных сосудов и, следовательно, кровоснабжение железы, от уровня которого зависит, в известной мере, функция железы.
Функционирование эндокринной системы осуществляется в тесном взаимодействии и взаимовлиянии с нервной системой. Так, например, гипоталамус получает информацию из внешней и внутренней среды. Эта информация по сенсорным системам поступает в различные отделы головного мозга. Из них она в переработанном виде передается в гипоталамус, где она интегрируется с информацией, полученной им непосредственно от внутренней среды. В результате этого в гипоталамусе выделяются регуляторные гормоны, которые включаются в общую систему эндокринной регуляции. Наряду с этим формируются нервные влияния на железы, которые осуществляются через вегетативную нервную систему.
Нервная регуляция эндокринной системы через гипоталамус осуществляется, в основном, с участием структур лимбической системы: гиппокампа, миндалины, переднего таламуса, полосатого тела, соответствующих областей коры больших полушарий головного мозга. При этом регуляция со стороны лимбической системы может, осуществляется двумя путями: трансгипофизарным и парагипофизарным.
