- •1 Корпускулярно-волновой дуализм электромагнитного излучения.
- •2. Стационарное уравнение Шредингера.
- •3 Нестационарное уравнение Шредингера(общее).
- •4. Строение атомов.
- •5. Методы расчета электронной структуры атомов.
- •6. Методы расчета электронной структуры молекул.
- •7. Зонная теория твердого тела.
- •8. Зонная структура металлов.
- •9.Зонная структура полупроводников.
- •10.Зонная структура диэлектриков.
- •11. Собственная проводимость полупроводников.
- •12. Донорные и акцепторные примеси в полупроводниках.
- •13. Термоэлектрические явления в металлах и полупроводниках.
- •14. Сверхпроводимость.
- •15.Электронно-дырочный переход
- •16. Вольтамперная характеристика p-n-перехода.
- •17. Виды пробоев р-n-перехода.
- •18. Контакт между полупроводниками одного типа проводимости.
- •19. Контакт «металл - полупроводник».
- •20. Физические процессы в структуре с двумя переходами.
- •21. Физические принципы работы полупроводниковых диодов
- •22. Выпрямительные диоды и их основные параметры.
- •23. Импульсные диоды и их основные параметры
- •24 Туннельные диоды и их основные харак-ки
- •25. Обращенные диоды и их основные параметры.
- •26. Диоды Шоттки и их основные параметры.
- •27. Режимы работы биполярных транзисторов.
- •28. Основные параметры биполярных транзисторов.
- •29. Схемы включения биполярных транзисторов.
- •30. Полевые транзисторы и схемы их включения.
- •31. Статические характеристики полевых транзисторов.
- •32. Применение полупроводниковых диодов и транзисторов.
- •33 Интегральные микросхемы
- •34 Фотоэлектрические явления в полупроводниках
- •35. Фоторезисторы и их основные параметры.
- •36 Фотодиоды и их параметры
- •37,38. Лавинные фотодиоды и их применение.
- •39. Многоэлементные фотоприемники.
- •40. Фотоэлементы.
- •41. Фотоэдс.Солнечные батареи.
- •42 Явление радиоактивности
- •43 Α , β, γ-излучение
- •44 Дозы излучения и их единицы
- •45 Активность радиоактивного ве-ва.
- •46 Биологическое действие ионизирующего излучения.
- •47 Физические принципы работы приборов дозиметрического контроля
- •48.Приборы на туннельном эффекте
- •49. Приборы на квантовых ямах
- •50. Низкоразмерные системы
- •51. Квантовые точки
- •52. Квантовые шнуры
- •53.Квантовые плёнки
- •54. Устройства молекулярной электроники : диоды , транзисторы, оптические сенсоры.
- •55.Одноэлектронные транзисторы
- •56.Физические принципы работы оптического волокна
- •Одномодовые оптические волокна
- •Многомодовые типы оптических волокон
- •59 Явление люминесценции в п/п.
- •Инжекционные светодиоды с р-n-переходами
- •61. Светодиоды с антистоксовым люминофором
- •62,63 Источники света с порошкообразным и пленочным
- •64 Когерентные источники и усилители оптического излучения
- •65. Лазеры и их основные параметры.
- •66. Применение лазеров.
- •67. Фотоприемники, основанные на внешнем фотоэффекте.
- •68. Фотоэлектронные умножители.
- •69 Методы счета фотонов
- •72. Сверхпроводниковые фотоприемники для счета фотонов.
- •74. Однофотонные источники излучения.
- •75. Методы регистрации оптических сигналов.
46 Биологическое действие ионизирующего излучения.
В реакции организма на облучение можно выделить четыре фазы. Длительность первых трех быстрых фаз не превышает единиц микросекунд, в течение которых происходят различные молекулярные изменения. В четвертой медленной фазе эти изменения переходят в функциональные и структурные нарушения в клетках, органах и организме в целом.
Первая, физическая фаза ионизации и возбуждения атомов длится
~10-13 с. Вo второй, химико-физической фазе, протекающей ~ 10-10 с, образуются высокоактивные в химическом отношении радикалы, которые, взаимодействуя с различными соединениями, дают начало вторичным радикалам, имеющим значительно большие по сравнению с первичными сроки жизни. В третьей, химической фазе, длящейся ~ 10-6 с, образовавшиеся радикалы вступают в реакции с органическими молекулами клеток, что приводит к изменению биологических свойств молекул.
В четвертой, биологической фазе химические изменения молекул преобразуются в клеточные изменения. Наиболее чувствительным к облучению является ядро клетки, а наибольшие последствия вызывает повреждение ДНК. В результате облучения в зависимости от величины поглощенной дозы клетка гибнет или становится неполноценной в функциональном отношении. Время протекания четвертой фазы очень различно и в зависимости от условий может растянуться на годы или даже на всю жизнь.
Альфа-излучение имеет малую длину пробега и не может проникнуть сквозь кожные покровы. Но альфа-излучающие нуклиды представляют большую опасность при поступлении внутрь организма через органы дыхания и пищеварения, через открытые раны и ожоговые поверхности.
Бета-излучение обладает большей проникающей способностью. Пробег бета-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так пробег электронов с энергией 4 МэВ в воздухе составляет 17.8 м, а в биологической ткани 2.6 см.
Гамма-излучение имеет еще более высокую проникающую способность. Под его действием происходит облучение всего организма.
При одной и той же поглощенной дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы.
Эквивалентная доза H рассчитывается путем умножения значения поглощенной дозы Di на специальный коэффициент — взвешивающий коэффициент Ki для излучения i-го типа (табл.23.2):
.
Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощенной в 1 кг биологической ткани .1 Зв = 100 бэр.
Радиация различно воздействует на жизненно важные органы человека. Для оценки ущерба его здоровью в условиях равномерного облучения всего тела введено понятие эффективной эквивалентной дозы Еэфф.
Эффективная
доза Eэфф
− величина, используемая как мера риска
возникновения отдаленных последствий
облучения всего тела человека и отдельных
его органов и тканей с учетом их
радиочувствительности. Она представляет
сумму произведений эквивалентной дозы
Hi
во всех органах и тканях на соответствующие
взвешивающие коэффициенты ri
для органов или тканей, т.е. Eэфф
=
.
Биологическое действие ионизирующих излучений. Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический.
При соматическом эффекте последствия проявляются непосредственно у облучаемого, при генетическом – у его потомства.
Таким образом, радиоактивное излучение всех видов оказывает очень сильное биологическое воздействие на живые организмы, вызывая возбуждение и ионизацию атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма.
Поглощённая доза излучения –физ.величина, равная отношению энергии излучения, к массе облучаемого вещества.
Экспозиционная доза – физ.величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденных в облученном воздухе к массе этого воздуха.
Биологическая доза-величина, определяющая воздействие излучения на организм.
