- •Раздел 1. « комплексные числа»
- •Тема 1. «Действия над комплексными числами»
- •Тема 2. « Нахождение модуля и аргумента комплексных чисел».
- •Тема 3. «Действия над комплексными числами в тригонометрической форме»
- •Образец выполнения контрольной работы « Комплексные числа»
- •Раздел 2. « предел последовательностей и функций»
- •Тема 1. « Вычисление пределов последовательностей»
- •Тема 2. « Раскрытие неопределённостей при вычислении пределов».
- •Тема 3. « Применение первого замечательного предела»
- •Тема 4. « Применение второго замечательного предела»
- •Тема 5.« Определение точек разрыва и асимптот функций»
- •Образец выполнения контрольной работы « Пределы»
- •3. Найдите точки разрыва функции и определите их род.
- •Раздел 3. «Применение дифференциального исчисления»
- •Тема 1. « Вычисление производных функций»
- •Тема 2. « Применение производной к исследованию функций»
- •Тема 3. « Исследование функций и построение графиков»
- •Раздел 4. «Применение интегрального исчисления»
- •Тема 1. « Вычисление неопределённого интеграла»
- •Тема 2. « Вычисление определённого интеграла»
- •Тема 3. « Применение интеграла для вычисления площадей и объёмов тел вращения»
- •Тема 4. «Вычисление неопределенных интегралов методом непосредственного интегрирования»
- •Тема 5. «Вычисление неопределенных интегралов методом замены ( подстановки)»
- •Тема 6. «Вычисление неопределенных интегралов методом интегрирования по частям»
- •Раздел 5. « Решение дифференциальных уравнений».
- •Тема1. «Решение дифференциальных уравнений первого порядка»
- •Тема 2. «Решение дифференциальных уравнений с разделяющимися переменными»
- •Тема 3. «Решение дифференциальных уравнений второго порядка с постоянными коэффициентами»
- •Раздел 6. « Применение основ линейной алгебры».
- •Тема 1. «Выполнение действий над матрицами».
- •Тема 2. «Выполнение элементарных преобразований матриц».
- •Тема 3. «Вычисление определителя матриц».
- •Тема 4. «Решение систем линейных уравнений методом Гаусса».
- •Тема 5. «Решение систем линейных уравнений методом Крамера».
- •Тема 6. «Нахождение обратной матрицы»
- •Тема 7. «Решение систем в матричной форме».
- •Раздел 7. «Основы аналитической геометрии».
- •Тема 1. « Составление различных уравнений прямой».
- •Тема 2.« Составление различных уравнений окружности».
- •Тема 3. « Составление различных уравнений эллипса».
- •Тема 4. « Составление различных уравнений гиперболы».
- •Тема 5. « Составление различных уравнений параболы».
- •Образец решения рт « Аналитическая геометрия».
- •2. Дано уравнение окружности . Определите координаты центра и радиус этой окружности.
- •3. Составьте уравнение гиперболы, если расстояние между фокусами 20, .
- •4. Составьте уравнение эллипса, проходящего через точки: а и в .
- •Примерные контрольные задания по дисциплине для подготовки к экзамену
- •Теоретические вопросы к экзамену
- •Список рекомендуемой литературы для выполнения практических работ и подготовки к экзамену
- •Приложение 1
- •Приложение 2
- •Приложение 3.
Образец выполнения контрольной работы « Пределы»
1.
Вычислите
предел последовательности и охарактеризуйте
её.
Решение:
Найдём первый элемент последовательности:
.
последовательность ограничена сверху.
2. Вычислите пределы функций:
а)
=
б)
=
( первый замечательный предел)
в)
=
( второй замечательный предел)
3. Найдите точки разрыва функции и определите их род.
Решение: Найдём
точки разрыва:
.
х = 5 - точка разрыва I рода.
х = - 5 - точка
разрыва II
рода.
4.
Найдите
асимптоты функции
Решение:
Найдём точки разрыва:
.
1)
- вертикальная
асимптота
2)
-
горизонтальная
асимптота.
3)
.
К =
.
К=0 наклонных асимптот нет Ответ: х = 6, у = 2.
Раздел 3. «Применение дифференциального исчисления»
Тема 1. « Вычисление производных функций»
Определение
1. Производной
функции
Производная
функции
есть некоторая функция
Определение
2.
Функция
,
имеющая производную в каждой точке
интервала
Для нахождения производных основных элементарных функций удобно использовать таблицу производных.(Приложение 2)
В ряде случаев, если функция представляет собой сумму, разность, произведение или частное двух функций, для нахождения ее производной используются правила дифференцирования.
Пример
1.
Найдите
производную функции
Решение. Сначала найдем производную функции как производную произведения. Воспользуемся правилом
Для
нахождения производной функции в
точке в производную
вместо аргумента подставим
Ответ: =2.
|
