- •Раздел 1. « комплексные числа»
- •Тема 1. «Действия над комплексными числами»
- •Тема 2. « Нахождение модуля и аргумента комплексных чисел».
- •Тема 3. «Действия над комплексными числами в тригонометрической форме»
- •Образец выполнения контрольной работы « Комплексные числа»
- •Раздел 2. « предел последовательностей и функций»
- •Тема 1. « Вычисление пределов последовательностей»
- •Тема 2. « Раскрытие неопределённостей при вычислении пределов».
- •Тема 3. « Применение первого замечательного предела»
- •Тема 4. « Применение второго замечательного предела»
- •Тема 5.« Определение точек разрыва и асимптот функций»
- •Образец выполнения контрольной работы « Пределы»
- •3. Найдите точки разрыва функции и определите их род.
- •Раздел 3. «Применение дифференциального исчисления»
- •Тема 1. « Вычисление производных функций»
- •Тема 2. « Применение производной к исследованию функций»
- •Тема 3. « Исследование функций и построение графиков»
- •Раздел 4. «Применение интегрального исчисления»
- •Тема 1. « Вычисление неопределённого интеграла»
- •Тема 2. « Вычисление определённого интеграла»
- •Тема 3. « Применение интеграла для вычисления площадей и объёмов тел вращения»
- •Тема 4. «Вычисление неопределенных интегралов методом непосредственного интегрирования»
- •Тема 5. «Вычисление неопределенных интегралов методом замены ( подстановки)»
- •Тема 6. «Вычисление неопределенных интегралов методом интегрирования по частям»
- •Раздел 5. « Решение дифференциальных уравнений».
- •Тема1. «Решение дифференциальных уравнений первого порядка»
- •Тема 2. «Решение дифференциальных уравнений с разделяющимися переменными»
- •Тема 3. «Решение дифференциальных уравнений второго порядка с постоянными коэффициентами»
- •Раздел 6. « Применение основ линейной алгебры».
- •Тема 1. «Выполнение действий над матрицами».
- •Тема 2. «Выполнение элементарных преобразований матриц».
- •Тема 3. «Вычисление определителя матриц».
- •Тема 4. «Решение систем линейных уравнений методом Гаусса».
- •Тема 5. «Решение систем линейных уравнений методом Крамера».
- •Тема 6. «Нахождение обратной матрицы»
- •Тема 7. «Решение систем в матричной форме».
- •Раздел 7. «Основы аналитической геометрии».
- •Тема 1. « Составление различных уравнений прямой».
- •Тема 2.« Составление различных уравнений окружности».
- •Тема 3. « Составление различных уравнений эллипса».
- •Тема 4. « Составление различных уравнений гиперболы».
- •Тема 5. « Составление различных уравнений параболы».
- •Образец решения рт « Аналитическая геометрия».
- •2. Дано уравнение окружности . Определите координаты центра и радиус этой окружности.
- •3. Составьте уравнение гиперболы, если расстояние между фокусами 20, .
- •4. Составьте уравнение эллипса, проходящего через точки: а и в .
- •Примерные контрольные задания по дисциплине для подготовки к экзамену
- •Теоретические вопросы к экзамену
- •Список рекомендуемой литературы для выполнения практических работ и подготовки к экзамену
- •Приложение 1
- •Приложение 2
- •Приложение 3.
Тема 5. « Составление различных уравнений параболы».
Определение 1. Парабола- это линия, состоящая из множества точек плоскости, равноудалённых от одной точки ( фокуса) и данной прямой (директрисы), которая не проходит через фокус ( F) Определение 2. Расстояние от фокуса до директрисы называется параметром параболы (p). Существует IV вида параболы: Симметрично оси Х ( I)
Симметрично
оси Х (II):
___________________________________________________________________ Симметрично оси Y (III):
______________________________________________________________________
Симметрично оси Y (IV):
Пример 1. Парабола проходит через точку А ( - 4; 10) симметрично оси ординат с вершиной в начале координат. Найдите уравнение директрисы и координаты фокуса. Решение: Парабола симметрична оси У и проходит через точку А ( - 4; 10), значит парабола III вида и имеет уравнение .
16
= 20р
Ответ:
|
Образец решения рт « Аналитическая геометрия».
1. Парабола проходит через точку А ( - 4; 10) симметрично оси ординат с вершиной в начале координат. Найдите уравнение директрисы и координаты фокуса.
Решение: Парабола симметрична оси У и проходит через точку А ( - 4; 10), значит парабола III вида и имеет уравнение .
Найдём p, для этого подставим координаты точки А, получим: ,
16 = 20р . Уравнение параболы имеет вид:
Уравнение директрисы имеет вид: . Подставим , получим:
- уравнение директрисы.
Фокус имеет координаты . Ответ: , .
2. Дано уравнение окружности . Определите координаты центра и радиус этой окружности.
Решение:
,
О
( 3; -5) – центр окружности, R
=
Ответ: О ( 3; -5), R = 4.
