Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник ПФКПФГоловы и Шеи.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
14.38 Mб
Скачать

6.5. Общие компенсаторные механизмы при повреждении клетки. Гибель клетки.

Действие на клетку патогенных факторов закономерно сопровождается активацией (или включением) реакций, направленных на устранение либо уменьшение степени повреждения и его последствий. Комплекс этих реакций обеспечивает приспособление (адаптацию) клетки к изменившимся условиям ее жизнедеятельности. К числу основных адаптивных механизмов относят реакции компенсации, восстановления, замещения утраченных или поврежденных структур и нарушений функций, защиты клеток от действия патогенных агентов, а также регуляторное снижение их функциональной активности. Весь комплекс адаптивных реакций условно можно разделить на две группы: внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы при повреждении.

К их числу можно отнести следующие:

  1. Компенсация нарушений энергетического обеспечения клеток:

а) интенсификация ресинтеза АТФ в процессе гликолиза, а также тканевого дыхания в неповрежденных митохондриях;

б) активация механизмов транспорта энергии АТФ;

в) активация механизмов утилизации энергии АТФ.

  1. Защита мембран и ферментов клетки:

а) повышение активности факторов системы антиоксидантной защиты;

б) активация буферных систем;

в) повышение активности ферментов детоксикации микросом;

г) активация механизмов репарации компонентов мембран и ферментов.

  1. Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках:

а) снижение степени нарушения энергообеспечения;

б) снижение степени повреждения мембран и ферментов;

в) активация буферных систем.

  1. Устранение нарушений генетической программы клеток:

а) устранение разрывов в нитях ДНК;

б) ликвидация (блокада) измененных участков ДНК;

в) синтез нормального фрагмента ДНК вместо поврежденного или утраченного.

  1. Компенсация расстройств механизмов регуляции внутриклеточных процессов:

а) изменение числа "функционирующих" рецепторов клетки;

б) изменение сродства рецепторов клетки к регулирующим факторам;

в) изменение активности аденилат – и (или) гуанилатциклазной систем, других "посреднических" систем;

г) изменение активности и (или) содержания внутриклеточных регуляторов метаболизма (ферментов, катионов и др.).

6. Снижение функциональной активности клеток.

7. Регенерация.

8. Гипертрофия.

9. Гиперплазия (см. рис. 6.8).

Рис. 6.8. Регуляция процессов жизнедеятельности клетки (пролиферация, подвижность, дифференцировка)

(Зильбергналь С. Клиническая патофизиология. Атлас. Перевод с английского под ред. П.Ф. Литвицкого. / С. Зильбергналь, Ф. Ланг/. – М.: ПРАКТИЧЕСКАЯ МЕДИЦИНА, 2015. – С.5.)

Компенсация нарушений энергетического обеспечения клеток. При повреждении клетки, как правило, в большей или меньшей мере страдают митохондрии и снижается ресинтез АТФ в процессе тканевого дыхания. Это служит сигналом для увеличения "продукции" АТФ в системе гликолиза. При слабой или умеренной степени повреждения активация ресинтеза АТФ может быть достигнута за счет повышения активности ферментов, принимающих участие в процессах окисления и фосфорилирования.

Определенный вклад в компенсацию нарушений энергообеспечения внутриклеточных процессов при повреждении вносит активация ферментов транспорта и утилизации энергии АТФ (адениннуклеотидтрансферазы, креатинфосфокиназы, АТФазы), а также ограничение функциональной активности клетки. Последнее способствует существенному уменьшению расхода энергии АТФ.

Защита мембран и ферментов клеток. Одним из значимых механизмов повреждения мембранного аппарата и энзимов клетки является интенсификация свободнорадикальных и перекисных реакций. Интенсивность этих реакций ограничивается главным образом ферментами антиоксидантной защиты – супероксиддисмутазой (инактивирующей радикалы кислорода), каталазой и глютатионпероксидазой, расщепляющими соответственно перекиси водорода и липидов.

Другим механизмом защиты мембран и энзимов от повреждающего действия, в частности ферментов лизосом, может быть активация буферных систем клетки. Это обусловливает уменьшение степени внутриклеточного ацидоза и как следствие избыточной гидролитической активности лизосомальных энзимов.

Важную роль в защите мембран и ферментов клеток от повреждения играют ферменты микросом (прежде всего эндоплазматической сети), обеспечивающие физико-химическую трансформацию патогенных агентов путем их окисления, восстановления, деметилирования и т.д. Альтерация клеток может сопровождаться дерепрессией генов и, как следствие, активацией процессов синтеза и репарации компонентов мембран (белков, липидов, углеводов) взамен поврежденных или утраченных.

Уменьшение степени или устранение дисбаланса ионов и жидкости в клетках. При повреждении клеток устранение дисбаланса ионов и жидкости может быть достигнуто путем активации механизмов энергетического обеспечения ионных "насосов", а также защиты мембран и ферментов, принимающих участие в транспорте ионов. Определенную роль в снижении степени ионного дисбаланса играет изменение интенсивности характера метаболизма, а также действие внутриклеточных буферных систем. Так, усиление гликолиза, сочетающегося с распадом гликогена, сопровождается высвобождением из его молекул ионов калия, содержание которого в поврежденных клетках понижено в связи с повышением проницаемости их мембран. Активация внутриклеточных буферных систем (карбонатной, фосфатной, белковой) может способствовать восстановлению оптимального соотношения в гиалоплазме и трансмембранного распределения ионов калия, натрия, кальция и др., в частности, путем уменьшения содержания в клетке ионов водорода. Снижение степени дисбаланса ионов в свою очередь может сопровождаться нормализацией содержания и циркуляции внутриклеточной жидкости, объема клеток и их органелл, а также электрофизиологических параметров.

Устранение нарушений в генетической программе клеток.

Изменения структуры ДНК, ведущие к повреждению клеток, могут быть обнаружены и устранены с участием ферментов репаративного синтеза ДНК. Эти ферменты обеспечивают обнаружение и удаление измененного участка ДНК (они получили название эндонуклеаз или рестриктаз), синтез нормального фрагмента нуклеиновой кислоты взамен удаленного (с помощью ДНК-полимераз) и встраивание вновь синтезированного фрагмента на место удаленного (с участием лигаз). Помимо этих сложных ферментных систем репарации ДНК, в клетке имеются энзимы, устраняющие "мелкомасштабные" биохимические изменения в геноме. К их числу относятся демителазы, удаляющие метильные группы; лигазы, устраняющие разрывы в цепях ДНК, возникающие под действием ионизирующего излечения или свободных радикалов, и др.

Компенсация расстройств механизмов регуляции внутриклеточных процессов.

К числу реакций, эффективно компенсирущих нарушения механизмов восприятия клеткой регулирующих влияний, относится изменение числа рецепторов гормонов, нейромедиаторов и других физиологически активных веществ на поверхности клетки и ее органелл, а также чувствительности (сродства) рецепторов к этим веществам. Количество рецепторов может меняться, в частности, благодаря тому, что молекулы их способны погружаться в мембрану или цитоплазму клетки и подниматься на ее поверхность. От числа и чувствительности рецепторов, воспринимающих регулирующие стимулы, в значительной мере зависят характер и выраженность ответа на них.

Избыток или недостаток гормонов и нейромедиаторов, а также существенные колебания их активности могут быть "сдемпфированы" на уровне так называемых вторых посредников реализации нервного стимула, в частности циклических нуклеотидов и фосфоинозитольной системы. Известно, например, что соотношение цАМФ и цГМФ изменяется не только в результате действия внутриклеточных регуляторных стимулов, но и внутриклеточных факторов, в частности фосфодиэстераз и ионов кальция. Нарушение реализации регулирующих влияний на клетку может в определенной мере компенсироваться и на уровне внутриклеточных метаболических процессов, поскольку многие из них протекают на основе регуляции интенсивности обмена веществ количеством продукта ферментной реакции (принцип положительной или отрицательной обратной связи).

Снижение функциональной активности клеток.

Важное значение среди адаптивных механизмов поврежденных клеток имеет управляемое, регулируемое снижение их функциональной активности. Это обусловливает уменьшение расхода энергии АТФ, субстратов метаболизма и кислорода, необходимых для осуществления функции и обеспечения пластических процессов. В результате этого степень и масштаб повреждения клеток при действии патогенного фактора существенно снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функции. К числу главных механизмов, обусловливающих временное понижение функции клеток, можно отнести уменьшение эффективных центров, снижение числа или чувствительности рецепторов на поверхности клетки, внутриклеточное регуляторное подавление метаболических реакций, репрессию активности отдельных генов.

Адаптация клеток в условиях повреждения происходит не только на метаболическом и функциональном уровнях. Длительное повторное или значительное повреждение обусловливает существенные структурные перестройки в клетке, имеющие адаптивное значение. Они достигаются за счет процессов регенерации, гипертрофии, гиперплазии.

Регенерация (от лат. regeneratio - возрождение, восстановление). Означает возмещение клеток и (или) отдельных структурных элементов взамен погибших, поврежденных или закончивших свой жизненный цикл. Регенерация структур сопровождается восстановлением их функций. Выделяют так называемую клеточную и внутриклеточную (субклеточную) формы регенерации. Первая характеризуется размножением клеток путем митоза или амитоза. Внутриклеточная регенерация проявляется восстановлением органелл: митохондрий, ядра, эндоплазматической сети и других вместо поврежденных или погибших.

Гиперплазия (от греч. hyper - чрезмерно, увеличение + греч. plasis - образование, формирование). Характеризуется увеличением числа структурных элементов, в частности органелл в клетке. Нередко в одной и той же клетке наблюдаются признаки и гиперплазии и гипертрофии. Оба процесса обеспечивают не только компенсацию структурного дефекта, но и возможность повышенного функционирования клетки (см. рис. 6.9.)

Рис.6.9. Гиперплазия и ее отличие от гипертрофии, атрофии и метаплазии

(Зильбергналь С. Клиническая патофизиология. Атлас. Перевод с английского под ред. П.Ф. Литвицкого. / С. Зильбергналь, Ф. Ланг/. – М.: ПРАКТИЧЕСКАЯ МЕДИЦИНА, 2015. – С.5).

Межклеточные (системные) механизмы адаптации клеток при их повреждении. В пределах тканей и органов клетки не разобщены. Они взаимодействуют друг с другом путем обмена метаболитами, ФАВ, ионами.

В свою очередь взаимодействие клеток и органов в организме в целом обеспечиваются функционированием систем- и кровообращения, иммунобиологического надзора, эндокринными и нервными влияниями.

Так, уменьшение содержания кислорода в крови (что обусловливает или может обусловить повреждение клеток, прежде всего, мозга) рефлекторно через раздражение хеморецепторов стимулирует нейроны дыхательного центра. Это приводит к увеличению объема альвеолярной вентиляции и ликвидирует или уменьшает степень недостатка кислорода в крови и тканях. Повреждение в результате увеличения выработки гормонов, способствующих повышению в крови уровня глюкозы и транспорта ее в клетки: адреналина, глюкокортикоидов, соматотропного гормона и др.

Примером адаптивной реакции циркуляторного типа может быть увеличение притока крови по коллатеральным (обходным) сосудам при закрытии просвета магистральной артерии какого-либо органа или ткани.

Иммунные механизмы надзора и защиты включаются при действии патогенного фактора антигенной природы. Иммунокомпетентная система с участием фагоцитов, антител и (или) Т-лимфоцитов инактивирует эндо и экзогенные антигены, способные повредить клетки организма. В норме указанные выше и другие системы обеспечивают адекватное реагирование организма в целом на различные воздействия эндо- и экзогенного происхождения. В патологии они участвуют в регуляции и реализации механизмов защиты, компенсации и восстановления поврежденных структур и нарушенных функций клеток и тканей.

Характерной чертой межклеточных механизмов адаптации является то, что они реализуются в основном при участии клеток, которые неподвергались непосредственному воздействию патогенного фактора (например, гиперфункция кардиомиоцитов за пределами зоны некроза при инфаркте миокарда).

По уровню реализации реакции межклеточной адаптации при повреждении клеток можно разделить на органно-тканевые, внутрисистемные, межсистемные.

Примером реакции органно-тканевого уровня может служить активация функции поврежденных клеток печени или почки при повреждении клеток части органа. Это снижает нагрузку на клетки, подвергшиеся патогенному воздействию, способствует уменьшению степени их альтерации и реализации репаративных процессов.

К числу внутрисистемных реакций относится сужение артериол при снижении работы сердца (например, при инфаркте миокарда), что обеспечивает поддержание высокого уровня перфузионного давления в тканях и предотвращает (или уменьшает степень) повреждения их клеток.

Вовлечение в адаптивные реакции нескольких физиологических систем наблюдается, например, при общей гипоксии. При этом активируется работа систем дыхания, кровообращения, крови и тканевого метаболизма, что снижает недостаток кислорода и субстратов метаболизма в тканях, повышает их утилизацию и уменьшает благодаря этому степень повреждения их клеток.

Активация внутриклеточных и межклеточных механизмов адаптации при повреждении, как правило, предотвращает гибель клеток, обеспечивает выполнение ими функций и способствует ликвидации последствий действия патогенного фактора. В этом случае говорят об обратимых изменениях в клетках. Если сила патогенного агента велика и (или) защитно-приспособительные механизмы недостаточны, развивается необратимое повреждение клеток и они погибают.

Принципы и методы повышения устойчивости интактных клеток к действию патогенных факторов и стимуляции адаптивных механизмов в них при повреждении

Воздействия, направленные на защиту интактных клеток от повреждения (профилактические) или на стимуляцию адаптивных механизмов при повреждении (лечебные), условно делят на две группы: немедикаментозные - для активации адаптивных механизмов при повреждении клеток. Наибольший эффект достигается при комбинации воздействий обеих групп.

И медикаментозные, и немедикаментозные воздействия могут быть направлены на:

  1. Устранение, прекращение, уменьшение силы и (или) длительности действия патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия. Такие воздействия называют этиотропными.

  2. Активацию механизмов компенсации, защиты, восстановления и приспособления клеток к изменившимся условиям. Эти воздействия обозначают как саногенетические (от лат. sanus - здоровый).

  3. Разрыв звеньев механизма развития (патогенеза) патологического процесса. Указанные воздействия обозначают как патогенетические.

Как свидетельствуют экспериментальные исследования на животных и апробация их результатов на человеке, тренировка организма по определенной схеме, например, прерывистым действием умеренной гипоксии, стрессорных факторов, физическими нагрузками, охлаждением, повышает устойчивость клеток органов и тканей, а также организма в целом к ряду патогенных факторов: к значительной гипоксии, ишемии, холоду, ионизирующей радиации и другим агентам. В связи с этим тренировка указанными и другими воздействиями используется для профилактики повреждений клеток тканей и органов при различных болезнях и патологических процессах, а также как один из методов стимуляции репаративных процессов в клетках.

В основе увеличения резистентности клеток тканей и органов к патогенным влияниям при тренировке названными выше, а также иными воздействиями лежит повышение надежности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций. Это в свою очередь является результатом активации генетического аппарата и как следствие синтеза необходимых белков, образования субклеточных структур и формирования других изменений, обеспечивающих повышение резистентности клеток к повреждающим агентам.

Большинство фармакологических средств, назначаемых при различных болезнях и патологических процессах, применяется с целью этиотропной или патогентической терапии. К числу основных принципов воздействий, преследующих цель уменьшить силу патогенного действия на клетки и (или) блокировать механизм развития патологического процесса, относят:

  1. Снижение степени или устранение нарушений процессов энергетического обеспечения клеток.

  2. Защиту мембран и ферментов клеток.

  3. Коррекцию и защиту механизмов трансмембранного переноса и внутриклеточного распределения ионов, контроля объема и электрофизиологических параметров клеток.

  4. Предотвращение действия факторов, вызывающих изменения в генетическом аппарате клеток.

  5. Коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

Ниже приведены некоторые принципы патогенетической терапии при повреждении клеток различных тканей и органов.

С целью снижения степени или устранения нарушений процессов энергетического обеспечения клеток применяют препараты, регулирующие или влияющие на активность процессов синтеза, транспорта или усвоения энергии АТФ. К ним относятся средства, которые обеспечивают следующие эффекты:

  1. Увеличение транспорта в клетки и усвоения ими кислорода и субстратов метаболизма (например, вещества, вызывающие расширение артериол, антигипоксанты, препараты облегчающие трансмембранный перенос субстратов).

  2. Защита и коррекция механизмов ресинтеза, внутриклеточного транспорта и усвоения энергии АТФ (например, антиоксиданты, мембраностабилизаторы, средства, стимулирующие метаболические процессы).

  3. Снижение расхода энергии в клетках (например, средтва, понижающие функциональную активность клеток или нагрузку на них, препараты нейромедиаторов или блокаторы их действия, пептиды, ингибиторы активности кальциевых каналов мембран клетки).

Защита мембран и ферментов клеток от действия повреждающих факторов достигается применением средств, обусловливающих:

  • снижение интенсивности свободнорадикальных и перекисных реакций (антиоксиданты);

  • стабилизацию мембран лизосом и предотвращение выхода из них гидролитических ферментов (мембраностабилизирующие препараты);

  • торможение активности гидролаз, разрушающих фосфолипиды и белки мембран (антиадренергические средства, ингибиторы активности кальциевых каналов и другие препараты, прямо или опосредованно препятствующие активации гидролаз).

Коррекция и защита механизмов трансмембранного переноса и внутриклеточного распределения ионов, контроля объема и электрофизиологических параметров клеток осуществляются с помощью препаратов, регулирующих транспорт ионов через клеточные мембраны, например ингибиторов кальциевых каналов мембран; средств, меняющих активность К-,Na-АТФазы и др. Учитывая, что трансмембранный перенос и внутриклеточное распределение ионов в большей мере зависят от физико-химического состояния мембран и энергетического снабжения клеток, коррекция ионного дисбаланса может быть в значительной мере обеспечена благодаря нормализации процессов синтеза, транспорта и утилизации энергии АТФ, а также путем защиты мембранного аппарата и ферментов клеток. Устранение дисбаланса ионов в клетке, как правило, сопровождается нормализацией процессов синтеза, транспорта и утилизации энергии АТФ, а также путем защиты мембранного аппарата и ферментов клеток. Устранение дисбаланса ионов в клетке, как правило, сопровождается нормализацией содержания в ней жидкости и электрофизиологических параметров (величины потенциала покоя, действия, амплитуды и др.). Однако при ряде заболеваний применяются параметры, уменьшающие общее содержание жидкости в организме, в том числе внутриклеточной, например, мочегонные средства.

В последние годы интенсивно разрабатываются мероприятия, направленные на предотвращение действия факторов, вызывающих изменения в генетическом аппарате клеток. С этой целью, помимо проведения специальных организационных и гигиенических мероприятий (спецодежда, экранирование источников радиактивного излучения), используют также лекарственные средства, повышающие устойчивость клеток организма к действию мутагенных факторов (главным образом ионизирующего излучения) путем защиты или уменьшения степени повреждения нуклеиновых кислот и других макромолекул.

Эти вещества получили название радиопротектров (радиозащитных или противолучевых препаратов).

Радиопротекторы условно разделяют на две группы в зависимости от их происхождения и механизма действия:

  1. Биологические.

  2. Фармакохимические.

Первые повышают радиорезистентность клеток организма за счет активации неспецифических механизмов и снижения чувствительности клеток к ионизирующим факторам. В связи с этим они применяются в основном с профилактической целью. В качестве биологических радиопротекторов используются витамины С и Р, гормоны, коферменты, адаптогены (экстракты и настойки элеутерококка, женьшеня, китайского лимонника и др.).

Фармакохимические радиопротекторы оказывают защитное действие благодаря стимуляции ферментных механизмов репарации ДНК, торможения процесса ее репликации (когда структура ДНК максимально уязвима), а также инактивации продуктов свободнорадикальных и перекисных реакций. К числу широко применяемых фармакохимических радиопротекторов относятся аминотиолы (например, цистамин, батилол, диэтон), индолилалкиламины (мексамин, серотонин), биогенные амины (ацетилхолин, гистамин, адреналин, норадреналин), полисахариды.

Обнаружению и устранению мутаций способствуют также воздействия, направленные на защиту мембран и ферментов клеток, в том числе энзимов репаративного синтеза белка ДНК.

Применение лекарственных средств при различных болезнях и патологических процессах может сопровождаться существенными изменениями фармококинетики и фармакодинамики препаратов. Это требует текущего контроля за характером и выраженностью действия лекарственных средств и при необходимости коррекции или изменения схем их применения.

Одним из механизмов фармакокинетики и фармакодинамики лекарственных средств при повреждении клеток является нарушение превращений препаратов в процессе метаболических реакций (биотрансформация) или в результате соединения с различными химическими группировками и молекулами (коньюгация). Так, например, снижение активности ферментов микросом клеток, в частности печени, в которой трансформируются и инактивируются многие лекарственные препараты, может сопровождаться увеличением продолжительности или выраженности эффекта их действия.

Нарушение превращений фармакологических средств в повреждённых клетках может обусловить образование в них соединений высокой токсической активности (например, образование фенетидина из фенацетина), изменение характера их действия (метаболит антидепресанта ипразина изониазид обладает противотуберкулёзной активностью) или накопление препарата в органах и тканях.

Существенным фактором, влияющим на эффекты действия лекарственных средств, является изменение реактивных свойств клеток, повреждённых в результате болезни или патологического процесса. Так, эффекты дыхательных аналептиков (лобелина, цититона), проявляющиеся на фоне нормального дыхания и на ранних стадиях гипоксии углублением и учащением дыхания, снижаются по мере нарастания степени гипоксии. Более того примениние этих средств на этапах терминального состояния предшествующих клинической смерти, нередко вызывает угнетение функции дыхательного центра.

Повторное применение лекарственного средства в условиях повреждения клеток при различных патологических процессах и заболеваниях может обусловить повышение чувствительности к нему (сенсибилизация), ускорить процесс привыкания к препарату (толерантность), способствовать формированию состояний, характеризующихся желанием повторного приёма данного средства (лекарственная зависимость) или развитием тяжелых состояний в результате его потребление (лекарственная непереносимость).

Некоторые лекарственные препараты оказывают действие на изменённые или повреждённые клетки. Например, сердечные гликозиды наиболее эффективны при сердечной недостаточности. Жаропонижающие средства оказывают более выраженное влияние при лихорадке. Это обусловлено тем, что действие указанных и некоторых других средств связано в основном с подавлением механизмов патогенеза либо реакций, формирующихся при данном заболевании или патологическом процессе. Например, ацетилсалициловая кислота (аспирин) тормозит или блокирует развитие лихорадки, снижая или подавляя активность циклооксигеназы, (повышенную при лихорадке) и, благодаря этому, уменьшает образование простогландинов группы Е, являющихся одним из медиаторов развития лихорадочной реакции.