- •Конспект лекций
- •Для специальностей 7.091501 «Компьютерные системы» и
- •7.091502 «Системное программирование»
- •Лекция №1. Структура стандартов ieee 802.1 - 802.5. Типы линий связи локальных сетей
- •Структура стандартов ieee 802.1 - 802.5
- •Раздел 802.2 определяет подуровень управления логическим каналом llc.
- •Физическая чреда передачи данных
- •Кабели на основе витых пар
- •Коаксиальные кабели
- •Оптоволоконные кабели
- •Бескабельные каналы связи
- •Какова реальная скорость адаптеров Wi-Fi 802.11n и 802.11g?
- •Лекция №2 Определение локальной сети. Топологии локальных сетей.
- •Определение локальной сети
- •Топологии локальных сетей
- •Топология шина
- •Топология звезда
- •Топология кольцо
- •Другие топологии
- •Многозначность понятия топологии
- •Лекция №3. Метод доступа csma/cd
- •Согласование, экранирование и гальваническая развязка линий связи
- •Лекция №4. Кодирование информации в локальных сетях. Функции канального уровня лан.
- •Кодирование информации в локальных сетях
- •Манчестерский код
- •Бифазный код
- •Другие коды
- •Функции канального уровня лан.
- •Методы передачи на канальном уровне
- •Передача с установлением соединения и без установления соединения
- •Методы гарантии доставки кадров информации (методы коррекции ошибок)
- •2) Второй метод - метод "скользящего окна" (sliding window).
- •Обнаружение ошибок
- •Методы обнаружения ошибок
- •Контроль по паритету
- •Вертикальный и горизонтальный контроль по паритету
- •Циклический избыточный контроль (Cyclic Redundancy Check, crc)
- •Лекция №5. Назначение пакетов и их структура. Методы управления обменом
- •Назначение пакетов
- •Структура пакетов
- •Инкапсуляция и декапсуляция
- •Адресация пакетов
- •Методы управления обменом
- •Управление обменом в сети с топологией звезда
- •Управление обменом в сети с топологией шина
- •Управление обменом в сети с топологией кольцо
- •Лекция №6. Эталонная модель osi
- •Понятие открытой системы межсетевого взамодействия
- •Функции уровней модели osi
- •Аппаратура локальных сетей
- •Лекция №7. Ip-Адресация
- •Идентификаторы сети и узла
- •Классы ip-адресов
- •Зарезервированные адреса
- •Маски подсети
- •Разбиение на подсети
- •Механизм разбиения на подсети
- •Преимущества разбиения на подсети
- •Определение максимального количества узлов в сети
- •Определение диапазонов адресов подсети
- •Проблемы классической схемы
- •Маска подсети переменной длины vlsm (Variable Length Subnet Mask)
- •Бесклассовая междоменная маршрутизация cidr (Classless Inter-Domain Routing)
- •Сложение маршрутов путем создания надсетей
- •Будущее адресного пространства
- •Лекция №8. Протоколы канального уровня
- •Технология Ethernet со скоростью передачи 100 Мбит/с
- •Технологии Ethernet со скоростью передачи 1000 Мбит/с
- •Проблемы совместимости
- •Средства обеспечения диаметра сети в 200м на разделяемой среде
- •Принципы построения сетей Gigabit Ethernet
- •Технология Ethernet соскоростью передачи 10 Гбит/с
- •Будущее технологии Ethernet
- •Протокол 100vg-AnyLan
- •Протокол Token Ring (High Speed Token Ring)
- •Протокол fddi
- •Протоколы slip и ppp
- •Лекция №9. Модель osi. Верхние уровни
- •Стандартные сетевые протоколы
- •Стандартные сетевые программные средства
- •Одноранговые сети
- •Сети на основе сервера
- •Протоколы сетевого и транспортного уровня
- •Стек протоколов ipx/spx
- •Стек протоколов NetBios / smb
- •Стек протоколов tcp/ip
- •Протокол ip (icmp). Маршрутизация.
- •Протоколы транспортного уровня tcp и udp.
- •Протоколы прикладного уровня http, ftp, smtp, imap, pop3, telnet.
- •Система доменных имен dns.
- •Лекция №10. Сетевое оборудование.
- •Повторитель (концентратор, hub)
- •Дополнительные функции концентраторов
- •Многосегментные концентраторы
- •Конструктивное исполнение концентраторов
- •Мост (bridge)
- •Алгоритм работы прозрачного моста.
- •Алгоритм работы моста с маршрутизацией от источника (sr-мосты).
- •Ограничения топологии сетей, построенных на прозрачных мостах.
- •Удаленные мосты
- •Лекция №10. Сетевое оборудование (продолжение)
- •Коммутатор (switch)
- •Типы коммутаторов
- •Полнодуплексный и полудуплексный режим работы коммутатора, управление потоком кадров.
- •Дополнительные возможности коммутаторов
- •1) Поддержка алгоритма Spanning Tree.
- •2) Трансляция протоколов канального уровня.
- •3) Фильтрация трафика.
- •4) Приоритетная обработка кадров.
- •5) Виртуальные локальные сети (Virtual lan, vlan).
- •1) Скорость фильтрации/продвижения кадров (кадров в секунду), пропускная способность (мегабит в секунду), задержка передачи кадра.
- •2) Тип коммутации — "на лету" или с полной буферизацией.
- •3) Размер адресной таблицы.
- •5) Производительность процессоров портов, производительность внутренней шины коммутатора.
- •Лекция №12. Алгоритм покрывающего дерева Spanning Tree
- •Алгоритм stp
- •Практический пример
- •Развитие stp
- •Лекция №13. Агрегирование каналов в локальных сетях
- •Агрегирование как способ повышения производительности и надежности.
- •Логический канал (Транк)
- •Размножение пакнтов
- •Борьба с «размножением»
- •Выбор порта
- •Восстановление при отказе
- •Лекция №14. Возможности современных коммутаторов по организации виртуальных сетей
- •Назначение виртуальных сетей
- •Типы виртуальных сетей
- •Виртуальные сети на основе группировки портов
- •Виртуальные сети на основе стандарта ieee 802.1q
- •Правила входящего порта (Ingress rules)
- •Правила продвижения пакетов (Forwarding Process)
- •Правила выходного порта (Egress rules)
- •Конфигурирование виртуальных сетей стандарта ieee 802.1q
- •Примеры построения vlan-сетей на основе коммутаторов, совместимых со стандартом ieee 802.1q
- •Лекция №15. Сетевое оборудование (часть 3)
- •Маршрутизатор (router)
- •Алгоритмы маршрутизации
- •Пример 1
- •Пример 2
- •1) Поддержка нескольких сетевых протоколов. Приоритеты сетевых протоколов.
- •2) Поддержка одновременно нескольких протоколов маршрутизации.
- •3) Поддержка политики маршрутных объявлений.
- •4) Поддержка немаршрутизируемых протоколов.
- •5) Разделение функций построения и использования таблицы маршрутизации.
- •Основные технические характеристики маршрутизатора.
- •1) Перечень поддерживаемых сетевых протоколов и протоколов машрутизации.
- •2) Перечень поддерживаемых интерфейсов локальных и глобальных сетей.
- •3) Общая производительность маршрутизатора.
- •Корпоративные модульные концентраторы.
- •Коммутаторы 3-го уровня с классической маршрутизацией.
- •Коммутаторы 3-го уровня с маршрутизацией потоков.
- •Шлюз (gateway), межсетевой экран (firewall), прокси-сервер, nat.
Бескабельные каналы связи
Кроме кабельных каналов в компьютерных сетях иногда используются также бескабельные каналы. Их главное преимущество состоит в том, что не требуется никакой прокладки проводов (не надо делать отверстий в стенах, закреплять кабель в трубах и желобах, прокладывать его под фальшполами, над подвесными потолками или в вентиляционных шахтах, искать и устранять повреждения). К тому же компьютеры сети можно легко перемещать в пределах комнаты или здания, так как они ни к чему не привязаны.
Радиоканал использует передачу информации по радиоволнам, поэтому теоретически он может обеспечить связь на многие десятки, сотни и даже тысячи километров. Скорость передачи достигает десятков мегабит в секунду (здесь многое зависит от выбранной длины волны и способа кодирования).
Особенность радиоканала состоит в том, что сигнал свободно излучается в эфир, он не замкнут в кабель, поэтому возникают проблемы совместимости с другими источниками радиоволн (радио- и телевещательными станциями, радарами, радиолюбительскими и профессиональными передатчиками и т.д.). В радиоканале используется передача в узком диапазоне частот и модуляция информационным сигналом сигнала несущей частоты.
Главным недостатком радиоканала является его плохая защита от прослушивания, так как радиоволны распространяются неконтролируемо. Другой большой недостаток радиоканала – слабая помехозащищенность.
Для локальных беспроводных сетей (WLAN – Wireless LAN) в настоящее время применяются подключения по радиоканалу на небольших расстояниях (обычно до 100 метров) и в пределах прямой видимости. Чаще всего используются два частотных диапазона – 2,4 ГГц и 5 ГГц. Скорость передачи – до 108 Мбит/с. Распространен вариант со скоростью 11 Мбит/с.
Сети WLAN позволяют устанавливать беспроводные сетевые соединения на ограниченной территории (обычно внутри офисного или университетского здания или в таких общественных местах, как аэропорты). Они могут использоваться во временных офисах или в других местах, где прокладка кабелей неосуществима, а также в качестве дополнения к имеющейся проводной локальной сети, призванного обеспечить пользователям возможность работать перемещаясь по зданию.
Популярная технология Wi-Fi (Wireless Fidelity) позволяет организовать связь между компьютерами числом от 2 до 15 с помощью концентратора (называемого точка доступа, Access Point, AP), или нескольких концентраторов, если компьютеров от 10 до 50. Кроме того, эта технология дает возможность связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов. Для примера на puc. показано объединение компьютеров с помощью одной точки доступа. Важно, что многие мобильные компьютеры (ноутбуки) уже имеют встроенный контроллер Wi-Fi, что существенно упрощает их подключение к беспроводной сети.
Какова реальная скорость адаптеров Wi-Fi 802.11n и 802.11g?
Сравнительная характеристика скорости уже существующих стандартов и нового 802.11n
Cкорость, которую указывают в характеристиках производители беспроводного Wi-Fi оборудования, не является скоростью передачи пользовательских данных. Данная скорость - лишь так называемая "скорость радио", в то время как скорость передачи файлов должна составлять максимум половину от "скорости радио". Более того, если оба компьютера подключены к одной точке доступа или роутеру по Wi-Fi, в силу технических особенностей стандарта скорость обмена файлами между клиентами должна уменьшаться еще в два раза. В случае с Wi-Fi 802.11g скорость передачи файлов между двумя компьютерами составит всего 12 Мбит/с. Если один из клиентов будет подключен к роутеру по кабелю LAN, скорость вновь возрастет до 20-24 Мбит/с.
При этом данные цифры характерны лишь для того случая, если клиенты и точка доступа находится в пределах прямой видимости. При увеличении расстояния скорость должны неизбежно падать (реальная эффективная дальность действия wi-fi оборудования обычно не превышает 100 м). Очень сильно влияет на качество сигнала межкомнатные перекрытия в зданиях (при этом не только железобетонные или кирпичные, но и фанерные или стеклянные). Также оказывают влияние на сигнал Wi-Fi мебель и даже комнатные растения.
Для того, чтобы полностью раскрыть потенциал стандарта 802.11n, в спецификациях которого указана скорость радио 300 Мбит/с (соответственно, 150 Мбит/с скорость передачи данных), потребуется особое оборудование. Лишь роутеры и и приемники, которые обладают тремя антеннами, а также поддерживают работу на частоте 5 ГГц, способны теоретически приблизиться к отметке в 150 Мит/сек для скорости передачи данных. В то же время большая часть оборудования, которая поддерживает 802.11n, обладает лишь одной антенной (особенно это касается USB-приемников или встроенных в ноутбуки адаптеров) и работает лишь на частоте 2,4 ГГц, что гарантированно "урезает" теоретический максимум скорости передачи данных лишь 75 Мбит/сек.
К сожалению, теоретическая скорость очень редко оказывается реально достижимой. На практике же самое лучшее из доступного на рынке оборудования для домашнего применения, полностью соответствующего требованиям стандарта 802.11n (со скоростью радио 300 Мбит/с), обеспечивает скорость передачи данных лишь 90-110 Мбит/сек вместо теоретических 150 Мбит/сек.
Радиоканал широко применяется в глобальных сетях как для наземной, так и для спутниковой связи. В этом применении у радиоканала нет конкурентов, так как радиоволны могут дойти до любой точки земного шара.
Инфракрасный канал также не требует соединительных проводов, так как использует для связи инфракрасное излучение (подобно пульту дистанционного управления домашнего телевизора). Главное его преимущество по сравнению с радиоканалом – нечувствительность к электромагнитным помехам, что позволяет применять его, например, в производственных условиях, где всегда много помех от силового оборудования. Правда, в данном случае требуется довольно высокая мощность передачи, чтобы не влияли никакие другие источники теплового (инфракрасного) излучения. Плохо работает инфракрасная связь и в условиях сильной запыленности воздуха.
Скорости передачи информации по инфракрасному каналу обычно не превышают 5—10 Мбит/с, но при использовании инфракрасных лазеров может быть достигнута скорость более 100 Мбит/с. Секретность передаваемой информации, как и в случае радиоканала, не достигается, также требуются сравнительно дорогие приемники и передатчики. Все это приводит к тому, что применяют инфракрасные каналы в локальных сетях довольно редко. В основном они используются для связи компьютеров с периферией (интерфейс IrDA).
Инфракрасные каналы делятся на две группы:
Каналы прямой видимости, в которых связь осуществляется на лучах, идущих непосредственно от передатчика к приемнику. При этом связь возможна только при отсутствии препятствий между компьютерами сети. Зато протяженность канала прямой видимости может достигать нескольких километров.
Каналы на рассеянном излучении, которые работают на сигналах, отраженных от стен, потолка, пола и других препятствий. Препятствия в данном случае не помеха, но связь может осуществляться только в пределах одного помещения.
Если говорить о возможных топологиях, то наиболее естественно все беспроводные каналы связи подходят для топологии типа шина, в которой информация передается одновременно всем абонентам. Но при использовании узконаправленной передачи и/или частотного разделения по каналам можно реализовать любые топологии (кольцо, звезда, комбинированные топологии) как на радиоканале, так и на инфракрасном канале.
