- •Конспект лекций
- •Для специальностей 7.091501 «Компьютерные системы» и
- •7.091502 «Системное программирование»
- •Лекция №1. Структура стандартов ieee 802.1 - 802.5. Типы линий связи локальных сетей
- •Структура стандартов ieee 802.1 - 802.5
- •Раздел 802.2 определяет подуровень управления логическим каналом llc.
- •Физическая чреда передачи данных
- •Кабели на основе витых пар
- •Коаксиальные кабели
- •Оптоволоконные кабели
- •Бескабельные каналы связи
- •Какова реальная скорость адаптеров Wi-Fi 802.11n и 802.11g?
- •Лекция №2 Определение локальной сети. Топологии локальных сетей.
- •Определение локальной сети
- •Топологии локальных сетей
- •Топология шина
- •Топология звезда
- •Топология кольцо
- •Другие топологии
- •Многозначность понятия топологии
- •Лекция №3. Метод доступа csma/cd
- •Согласование, экранирование и гальваническая развязка линий связи
- •Лекция №4. Кодирование информации в локальных сетях. Функции канального уровня лан.
- •Кодирование информации в локальных сетях
- •Манчестерский код
- •Бифазный код
- •Другие коды
- •Функции канального уровня лан.
- •Методы передачи на канальном уровне
- •Передача с установлением соединения и без установления соединения
- •Методы гарантии доставки кадров информации (методы коррекции ошибок)
- •2) Второй метод - метод "скользящего окна" (sliding window).
- •Обнаружение ошибок
- •Методы обнаружения ошибок
- •Контроль по паритету
- •Вертикальный и горизонтальный контроль по паритету
- •Циклический избыточный контроль (Cyclic Redundancy Check, crc)
- •Лекция №5. Назначение пакетов и их структура. Методы управления обменом
- •Назначение пакетов
- •Структура пакетов
- •Инкапсуляция и декапсуляция
- •Адресация пакетов
- •Методы управления обменом
- •Управление обменом в сети с топологией звезда
- •Управление обменом в сети с топологией шина
- •Управление обменом в сети с топологией кольцо
- •Лекция №6. Эталонная модель osi
- •Понятие открытой системы межсетевого взамодействия
- •Функции уровней модели osi
- •Аппаратура локальных сетей
- •Лекция №7. Ip-Адресация
- •Идентификаторы сети и узла
- •Классы ip-адресов
- •Зарезервированные адреса
- •Маски подсети
- •Разбиение на подсети
- •Механизм разбиения на подсети
- •Преимущества разбиения на подсети
- •Определение максимального количества узлов в сети
- •Определение диапазонов адресов подсети
- •Проблемы классической схемы
- •Маска подсети переменной длины vlsm (Variable Length Subnet Mask)
- •Бесклассовая междоменная маршрутизация cidr (Classless Inter-Domain Routing)
- •Сложение маршрутов путем создания надсетей
- •Будущее адресного пространства
- •Лекция №8. Протоколы канального уровня
- •Технология Ethernet со скоростью передачи 100 Мбит/с
- •Технологии Ethernet со скоростью передачи 1000 Мбит/с
- •Проблемы совместимости
- •Средства обеспечения диаметра сети в 200м на разделяемой среде
- •Принципы построения сетей Gigabit Ethernet
- •Технология Ethernet соскоростью передачи 10 Гбит/с
- •Будущее технологии Ethernet
- •Протокол 100vg-AnyLan
- •Протокол Token Ring (High Speed Token Ring)
- •Протокол fddi
- •Протоколы slip и ppp
- •Лекция №9. Модель osi. Верхние уровни
- •Стандартные сетевые протоколы
- •Стандартные сетевые программные средства
- •Одноранговые сети
- •Сети на основе сервера
- •Протоколы сетевого и транспортного уровня
- •Стек протоколов ipx/spx
- •Стек протоколов NetBios / smb
- •Стек протоколов tcp/ip
- •Протокол ip (icmp). Маршрутизация.
- •Протоколы транспортного уровня tcp и udp.
- •Протоколы прикладного уровня http, ftp, smtp, imap, pop3, telnet.
- •Система доменных имен dns.
- •Лекция №10. Сетевое оборудование.
- •Повторитель (концентратор, hub)
- •Дополнительные функции концентраторов
- •Многосегментные концентраторы
- •Конструктивное исполнение концентраторов
- •Мост (bridge)
- •Алгоритм работы прозрачного моста.
- •Алгоритм работы моста с маршрутизацией от источника (sr-мосты).
- •Ограничения топологии сетей, построенных на прозрачных мостах.
- •Удаленные мосты
- •Лекция №10. Сетевое оборудование (продолжение)
- •Коммутатор (switch)
- •Типы коммутаторов
- •Полнодуплексный и полудуплексный режим работы коммутатора, управление потоком кадров.
- •Дополнительные возможности коммутаторов
- •1) Поддержка алгоритма Spanning Tree.
- •2) Трансляция протоколов канального уровня.
- •3) Фильтрация трафика.
- •4) Приоритетная обработка кадров.
- •5) Виртуальные локальные сети (Virtual lan, vlan).
- •1) Скорость фильтрации/продвижения кадров (кадров в секунду), пропускная способность (мегабит в секунду), задержка передачи кадра.
- •2) Тип коммутации — "на лету" или с полной буферизацией.
- •3) Размер адресной таблицы.
- •5) Производительность процессоров портов, производительность внутренней шины коммутатора.
- •Лекция №12. Алгоритм покрывающего дерева Spanning Tree
- •Алгоритм stp
- •Практический пример
- •Развитие stp
- •Лекция №13. Агрегирование каналов в локальных сетях
- •Агрегирование как способ повышения производительности и надежности.
- •Логический канал (Транк)
- •Размножение пакнтов
- •Борьба с «размножением»
- •Выбор порта
- •Восстановление при отказе
- •Лекция №14. Возможности современных коммутаторов по организации виртуальных сетей
- •Назначение виртуальных сетей
- •Типы виртуальных сетей
- •Виртуальные сети на основе группировки портов
- •Виртуальные сети на основе стандарта ieee 802.1q
- •Правила входящего порта (Ingress rules)
- •Правила продвижения пакетов (Forwarding Process)
- •Правила выходного порта (Egress rules)
- •Конфигурирование виртуальных сетей стандарта ieee 802.1q
- •Примеры построения vlan-сетей на основе коммутаторов, совместимых со стандартом ieee 802.1q
- •Лекция №15. Сетевое оборудование (часть 3)
- •Маршрутизатор (router)
- •Алгоритмы маршрутизации
- •Пример 1
- •Пример 2
- •1) Поддержка нескольких сетевых протоколов. Приоритеты сетевых протоколов.
- •2) Поддержка одновременно нескольких протоколов маршрутизации.
- •3) Поддержка политики маршрутных объявлений.
- •4) Поддержка немаршрутизируемых протоколов.
- •5) Разделение функций построения и использования таблицы маршрутизации.
- •Основные технические характеристики маршрутизатора.
- •1) Перечень поддерживаемых сетевых протоколов и протоколов машрутизации.
- •2) Перечень поддерживаемых интерфейсов локальных и глобальных сетей.
- •3) Общая производительность маршрутизатора.
- •Корпоративные модульные концентраторы.
- •Коммутаторы 3-го уровня с классической маршрутизацией.
- •Коммутаторы 3-го уровня с маршрутизацией потоков.
- •Шлюз (gateway), межсетевой экран (firewall), прокси-сервер, nat.
Другие топологии
Кроме трех рассмотренных базовых топологий нередко применяется также сетевая топология дерево (tree), которую можно рассматривать как комбинацию нескольких звезд. Причем, как и в случае звезды, дерево может быть активным или истинным (рис.) и пассивным (рис.). При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном — концентраторы (хабы).
Топология активное дерево
Топология пассивное дерево. К — концентраторы
Довольно часто применяются комбинированные топологии, среди которых наиболее распространены звездно-шинная (рис.) и звездно-кольцевая (рис.).
Пример звездно-шинной топологии
Пример звездно-кольцевой топологии
В звездно-шинной (star-bus) топологии используется комбинация шины и пассивной звезды. К концентратору подключаются как отдельные компьютеры, так и целые шинные сегменты. На самом деле реализуется физическая топология шина, включающая все компьютеры сети. В данной топологии может использоваться и несколько концентраторов, соединенных между собой и образующих так называемую магистральную, опорную шину. К каждому из концентраторов при этом подключаются отдельные компьютеры или шинные сегменты. В результате получается звездно-шинное дерево. Таким образом, пользователь может гибко комбинировать преимущества шинной и звездной топологий, а также легко изменять количество компьютеров, подключенных к сети. С точки зрения распространения информации данная топология равноценна классической шине.
В случае звездно-кольцевой (star-ring) топологии в кольцо объединяются не сами компьютеры, а специальные концентраторы (изображенные на рис. 1.16 в виде прямоугольников), к которым в свою очередь подключаются компьютеры с помощью звездообразных двойных линий связи. В действительности все компьютеры сети включаются в замкнутое кольцо, так как внутри концентраторов линии связи образуют замкнутый контур (как показано на рис. 1.16). Данная топология дает возможность комбинировать преимущества звездной и кольцевой топологий. Например, концентраторы позволяют собрать в одно место все точки подключения кабелей сети. Если говорить о распространении информации, данная топология равноценна классическому кольцу.
В заключение надо также сказать о сеточной топологии (mesh), при которой компьютеры связываются между собой не одной, а многими линиями связи, образующими сетку (рис).
Сеточная топология: полная (а) и частичная (б)
В полной сеточной топологии каждый компьютер напрямую связан со всеми остальными компьютерами. В этом случае при увеличении числа компьютеров резко возрастает количество линий связи. Кроме того, любое изменение в конфигурации сети требует внесения изменений в сетевую аппаратуру всех компьютеров, поэтому полная сеточная топология не получила широкого распространения.
Частичная сеточная топология предполагает прямые связи только для самых активных компьютеров, передающих максимальные объемы информации. Остальные компьютеры соединяются через промежуточные узлы. Сеточная топология позволяет выбирать маршрут для доставки информации от абонента к абоненту, обходя неисправные участки. С одной стороны, это увеличивает надежность сети, с другой же – требует существенного усложнения сетевой аппаратуры, которая должна выбирать маршрут.
