- •Оглавление
- •Практическое занятие 1. Адресация iPv4
- •1.1. Протокол ip версии 4
- •1.1.1. Понятие ip-адресации
- •1.1.2. Представление и структура адреса iPv4
- •1.1.3. Классовая адресация iPv4
- •1.1.4. Частные и публичные адреса iPv4
- •1.1.5. Формирование подсетей
- •1.1.6. Маски подсети переменной длины (vlsm)
- •1.1.7. Бесклассовая адресация iPv4
- •1.1.8. Общие функции классовой и бесклассовой адресации
- •1.2. Выделение адресов
- •1.3. Агрегирование маршрутов и суперсети
- •6.4. Способы конфигурации адреса iPv4
- •Практическое занятие 1. Задания
- •1.1. Преобразование десятичного формата представления числа в двоичный
- •1.2. Преобразование двоичного формата представления числа в десятичный
- •1.3. Преобразование ip-адреса из десятичного формата в двоичный
- •1.4. Преобразование ip-адреса из двоичного формата в десятичный
- •1.5. Определение классов ip-адресов
- •1.6. Определение допустимых для использования ip-адресов
- •1.7. Вычисление количества битов, необходимого для подсетей
- •1.8. Вычисление масок подсети
- •1.9. Разбиение сети на подсети с использованием маски подсети фиксированной длины
- •2.1. Формат заголовка iPv6
- •2.2. Представление и структура адреса iPv6
- •0:0:0:0:0:0:13.1.68.3 Или в сокращенном виде ::13.1.68.3
- •0:0:0:0:0:Ffff:129.144.52.38 или в сокращенном виде ::ffff:129.144.52.38
- •2.3. Типы адресов iPv6
- •2.4. Индивидуальные адреса
- •Идентификатор интерфейса
- •Глобальные индивидуальные адреса iPv6
- •Локально-используемые индивидуальные адреса iPv6
- •2.5. Альтернативные адреса
- •2.6. Групповые адреса
- •2.7. Способы конфигурации адреса iPv6
- •2.8. Планирование подсетей iPv6
- •3.2 Методика расчета времени двойного оборота и уменьшения межкадрового интервала
- •3.3 Пример расчета конфигурации сети
- •Практическое занятие 3. Задание
- •3.1. Произвести оценку конфигурации сети в соответствии с вариантом:
- •3.2. По результатам расчетов сделать вывод о корректности конфигурации сети Ethernet.
- •Практическое занятие 4. Система доменных имен
- •4.1. Пространство имен
- •4.1.1. Плоское пространство имен
- •4.1.2. Иерархическое пространство имен
- •4.1.5.1.2. Частично определенное имя домена
- •4.1.6. Домен
- •4.2. Распределение имен
- •4.2.1. Иерархия серверов имен
- •4.2.2. Зона
- •4.2.3. Корневой сервер
- •4.2.4. Первичные и вторичные серверы
- •4.3. Dns в Интернете
- •4.3.1. Родовой домен
- •4.3.2. Домены страны
- •4.3.3. Инверсный домен
- •4.4. Распознавание имен
- •4.4.1. Распознаватель (resolver)
- •4.4.2. Отображение имен в адреса
- •4.4.3. Отображение адресов в имена
- •4.4.4. Рекурсивное распознавание
- •4.4.5. Итерационное распознавание
- •4.4.6. Кэширование
- •4.5.1. Заголовок
- •4.6.2. Запись ресурса
- •4.7. Сжатие
- •Примеры
- •Пример 1
- •Пример 2
- •4.9. Инкапсуляция
- •Практическое занятие 4. Задания
- •Практическое занятие 5. Протокол snmp (Простой протокол управления сетью)
- •5.2. Концепция
- •5.3. Менеджеры и агенты
- •5.4. Компоненты управления
- •5.4.1. Задачи snmp
- •5.4.2. Задачи smi
- •5.4.3. Задачи mib
- •5.4.4. Аналогия
- •5.5. Общие замечания
- •5.6. Структура управляющей информации, версия 2 (smIv2)
- •5.6.2.1. Простой тип
- •5.6.2.2. Структурированный тип
- •5.7. Метод кодирования
- •5.7.1.2. Таблицы
- •Лексикографическое упорядочение
- •Ответ (Response)
- •Ловушка (Trap)
- •5.9. Формат
- •5.10. Сообщения
- •Пример 1
- •Практическое занятие 5. Задания
- •Практическое занятие 6. Гипертекстовый протокол http (часть 1)
- •6.1. Соглашения по нотации и общая грамматика. Расширенные bnf
- •6.2. Основные правила
- •6.2. Параметры протокола. Версия http
- •6.3. Универсальные идентификаторы ресурсов (uri)
- •6.4. Общий синтаксис
- •6.4.2. Сравнение uri
- •6.5. Форматы даты/времени. Полная дата
- •6.5.1. Интервалы времени в секундах
- •6.6. Наборы символов
- •Кодировки содержимого
- •Транспортное кодирование
- •Типы среды
- •Канонизация и текст по умолчанию
- •Составные типы
- •Лексемы (token) продукта
- •2.9. Значения качества (Quality values)
- •Языковые метки
- •Метки объектов
- •Структурные единицы
- •Http сообщение. Типы сообщений
- •Заголовки сообщений
- •Общие поля заголовка
- •Строка запроса
- •Uri запроса
- •Ресурс, идентифицируемый запросом
- •Поля заголовка запроса
- •Статусная строка
- •Статусный код и словесный комментарий
- •Поля заголовка отклика
- •Объект (Entity)
- •Поля заголовка объекта
- •Тело объекта
- •Соединения. Постоянные соединения. Цель
- •Общие процедуры
- •Согласование
- •Буферизация
- •Проксисерверы
- •Практические соображения
- •Требования к передаче сообщений
- •Метод определений
- •Безопасные и идемпотентные методы. Безопасные методы
- •Идемпотентные методы
- •Метод get
- •Метод head
- •Метод post
- •Метод put
- •Метод delete
- •Метод trace
- •Successful 2xx (Успешная доставка)
- •201 Created (Создано)
- •202 Accepted (Принято)
- •203 NonAuthoritative Information (Не надежная информация)
- •204 No Content (Никакого содержимого)
- •205 Reset Content (Сброс содержимого)
- •206 Partial Content (Частичное содержимое)
- •Redirection 3xx (Переадресация)
- •300 Multiple Choices (Множественный выбор)
- •301 Moved Permanently (Постоянно перемещен)
- •302 Moved Temporarily (Временно перемещен)
- •303 See Other (смотри другие)
- •304 Not Modified (Не модифицировано)
- •305 Use Proxy (Используйте прокси)
- •Client Error 4xx (Ошибка клиента)
- •400 Bad Request (Плохой запрос)
- •401 Unauthorized (Не авторизован)
- •402 Необходима оплата
- •403 Forbidden (Запрещено)
- •404 Not Found (Не найдено)
- •405 Method Not Allowed (Метод не разрешен)
- •406 Not Acceptable (Не приемлемо)
- •407 Proxy Authentication Required (Необходима идентификация прокси)
- •408 Request Timeout (Таймаут запроса)
- •409 Conflict (Конфликт)
- •410 Gone (Исчез)
- •415 Unsupported Media Type (Неподдерживаемый тип среды)
- •Server error 5xx (ошибка сервера)
- •Базовая схема идентификации (Authentication)
- •Краткое изложение схемы авторизации
- •Согласование содержимого
- •Согласование, управляемое сервером
- •Согласование, управляемое агентом (Agentdriven Negotiation)
- •Прозрачное согласование (Transparent Negotiation)
- •Кэширование в http
- •Корректность кэша
- •Предупреждения
- •Механизмы управления кэшем
- •Прямые предупреждения агента пользователя
- •Исключения для правил и предупреждений
- •Работа под управлением клиента
- •Модель истечения срока годности. Определение срока годности под управлением сервера
- •Эвристический контроль пригодности
- •Вычисление возраста
- •Вычисление времени жизни (Expiration)
- •Устранение неопределенности значений времени жизни
- •Неопределенность из-за множественных откликов
- •Модель проверки пригодности
- •Даты последней модификации
- •Валидаторы кэша для меток объектов (Entity Tag Cache Validators)
- •Слабые и сильные валидаторы
- •Правила того, когда использовать метки объекта и даты последней модификации
- •Условия пригодности
- •Кэшируемость отклика
- •Формирование откликов кэшей
- •Заголовки End-to-end (точкаточка) и Hop-by-hop (шагза-шагом)
- •Немодифицируемые заголовки
- •Комбинирование заголовков
- •Комбинирование байтовых фрагментов
- •Кэширование согласованных откликов
- •Кэши коллективного и индивидуального использования
- •Ошибки и поведение кэша при неполном отклике
- •Побочные эффекты методов get и head
- •Несоответствие после актуализации или стирания
- •Обязательная пропись (Write-Through Mandatory)
- •Замещения в кэше
- •Списки предыстории
- •Определения полей заголовка
- •Поле Accept
- •Поле Accept-Charset
- •Поле Accept-Encoding
- •Поле Accept-Language
- •Поле Accept-Ranges
- •Поле Age
- •Поле Allow
- •Авторизация
- •Поле Cache-Control
- •Что допускает кэширование?
- •Что может быть записано в память кэша?
- •Модификации базового механизма контроля времени жизни
- •Управление перепроверкой пригодности и перезагрузкой
- •Директива No-Transform
- •Расширения управления кэшем
- •Соединение
- •Кодирование содержимого
- •Язык содержимого
- •Длина содержимого
- •Поле Content-Location
- •Отрывок содержимого
- •Тип содержимого
- •Поле eTag
- •Поле Expires
- •Поле From
- •Поле Host
- •Поле If-Modified-Since
- •Поле If-Match
- •Поле If-None-Match
- •Заголовок If-Range
- •Поле If-Unmodified-Since
- •Поле Last-Modified
- •Поле Location
- •Поле Max-Forwards
- •Поле Pragma
- •Поле Proxy-Authenticate
- •Поле Proxy-Authorization
- •Поле Public
- •Фрагмент. Фрагменты байт
- •Запросы получения фрагментов
- •Поле Referer
- •Поле Retry-After
- •Поле Server
- •Поле Transfer-Encoding (Транспортное кодирование)
- •Заголовок Upgrade (Актуализация)
- •Поле User-Agent (Агент пользователя)
- •Поле Vary
- •Поле Via
- •Поле Warning (Предупреждение)
- •Поле www-Authenticate
- •Соображения безопасности
- •Аутентификация клиентов
- •Предложение выбора схемы идентификации
- •Злоупотребление служебными (Log) записями сервера
- •Передача конфиденциальной информации
- •Атаки, основанные на именах файлов и проходах
- •Персональная информация
- •Аспекты конфиденциальности, связанные с заголовками Accept
- •Фальсификация dns
- •Заголовки Location и мистификация
- •Приложения
- •1. Интернетовский тип среды message/http
- •2. Тип среды Интернет multipart/byteranges
- •3. Толерантные приложения
- •4. Различие между объектами http и mime
- •Преобразование к канонической форме
- •Введение кодирования содержимого
- •Поля заголовка в многофрагментных телах
- •Введение транспортного кодирования
- •Дополнительные методы запросов Метод patch
- •Метод link
- •Определения дополнительных полей заголовка Поле Alternates
- •Поле Content-Version
- •Поле Derived-From
- •Поле Link
- •Практическое занятие 8. Функционирование веб-приложений. Как работают веб-приложения
- •Краткие итоги
- •Протокол http/https
- •Краткие итоги
- •Что такое веб-сервер?
- •Краткие итоги
- •Контрольные вопросы
Модель проверки пригодности
Когда кэш имеет устаревшую запись, которую бы он хотел использовать в качестве отклика на запрос клиента, он сначала должен произвести сверку с базовым сервером (или, возможно, промежуточным кэшем, содержащим свежий отклик), чтобы убедиться, что кэшированная запись все еще применима. Мы это называем проверкой пригодности записи кэша (validating). Так как мы не хотим пересылки всей записи, если с ней все в порядке, и мы не хотим тратить лишнее время изза RTT в случае, если запись более не пригодна, протокол HTTP/1.1 поддерживает использование условных методов.
Ключевой особенностью протокола для поддержки условных методов являются так называемые валидаторы кэша. Когда исходный сервер генерирует полный отклик, он подключает к нему некоторые виды валидаторов, которые хранятся вместе с самой записью в кэше. Когда клиент (агент пользователя или проксикэш) выполняет условный запрос ресурса, для которого он имеет запись в кэше, он добавляет соответствующий валидатор к запросу.
Сервер сверяет полученный валидатор с текущим валидатором объекта, и, если они совпадают, посылается отклик с соответствующим статусным кодом (обычно, 304 (Not Modified)) и без тела объекта. В противном случае возвращается полный отклик (включая тело объекта). Таким образом, мы избегаем передачи полного отклика, если валидаторы взаимно согласованы.
В HTTP/1.1 условный запрос выглядит точно так же, как и обычный запрос того же самого ресурса, за исключением того, что он несет в себе специальный заголовок (который содержит валидатор) и неявно меняет обычный метод GET на условный.
Протокол предусматривает как положительное, так и отрицательное значения условий проверки пригодности записей кэша. То есть, можно запросить, чтобы был реализован этот метод тогда и только тогда, когда валидатор подходит, или тогда и только тогда, когда ни один валидатор не подходит.
Замечание. Отклик, который не имеет валидатора, может кэшироваться и использоваться до истечения его срока годности, если только это явно не запрещено директивой Cache-Control. Однако кэш не может выполнить условную доставку ресурса, если он не имеет валидатора для запрашиваемого объекта, что означает отсутствие возможности его актуализации после истечения срока годности.
Даты последней модификации
Значение поля заголовка объекта Last-Modified часто используется кэшем в качестве валидатора. Иными словами, запись в кэше рассматривается как пригодная, если объект не был модифицирован с момента, указанного в Last-Modified.
Валидаторы кэша для меток объектов (Entity Tag Cache Validators)
Значение поля заголовка объекта ETag (Entity Tag — метка объекта), представляет собой непрозрачный валидатор кэша. Это может гарантировать большую надежность при контроле пригодности в ситуациях, когда неудобно запоминать модификации дат, где недостаточно односекундного разрешения для значения даты HTTP или где исходный сервер хочет избежать определенных парадоксов, которые могут возникнуть от использования дат модификации.
Слабые и сильные валидаторы
Так как исходные серверы и кэши будут сравнивать два валидатора, чтобы решить, представляют ли они один и тот же объект, обычно подразумевается, что, если объект (тело объекта или любой заголовок) изменяется каким-либо образом, то и сопряженный валидатор изменится. Если это так, такой валидатор называется сильным.
Однако могут встретиться случаи, когда сервер предпочитает изменять валидатор только при семантически существенных изменениях. Валидатор, который не изменяется всякий раз при изменении ресурса, называется слабым.
Метки объекта обычно являются сильными валидаторами, но протокол предлагает механизм установки слабой метки объекта. Можно считать, что сильный валидатор — это тот, который изменяется, если меняется хотя бы один бит в объекте, в то время как значение слабого изменяется при вариации значения объекта.
Сильный валидатор представляет собой часть идентификатора конкретного объекта, а слабый валидатор является частью идентификатора набора семантически эквивалентных объектов.
Замечание. Примером сильного валидатора является целое число, которое увеличивается на единицу всякий раз, когда в объект вносится какое-либо изменение.
Время модификации объекта при односекундном разрешении может быть лишь слабым валидатором, так как имеется возможность того, что ресурс может быть модифицирован дважды в течение одной и той же секунды.
Поддержка слабых валидаторов является опционной. Однако слабый валидатор позволяет более эффективно кэшировать эквивалентные объекты.
Валидатор используется либо, когда клиент генерирует запрос и включает валидатор в поле заголовка проверки годности, либо когда сервер сравнивает два валидатора.
Сильные валидаторы могут использоваться в любом контексте. Слабые валидаторы применимы только в контексте, который не зависит от точной эквивалентности объектов. Например, как один, так и другой вид валидаторов применим для условного GET. Однако только сильный валидатор применим для фрагментированного извлечения ресурсов, так как в противном случае клиент может прервать работу с внутренне противоречивым объектом.
Единственной функцией протокола HTTP/1.1, определенной для валидаторов, является сравнение. Существует две функции сравнения валидаторов, в зависимости от того, допускает ли контекст использование слабых валидаторов или нет.
Функция сильного сравнения. Для того, чтобы считаться равными, оба валидатора должны быть идентичными и не один из них не должен быть слабым.
Функция слабого сравнения. Для того, чтобы считаться равными, оба валидатора должны быть идентичными, но либо оба, либо один из них могут иметь метку "слабый" без какого-либо воздействия на результат.
Функция слабого сравнения может быть использована для простых (nonsubrange — не фрагментных) GETзапросов. Функция сильного сравнения должна быть использована во всех прочих случаях. Метка объекта является сильной, если она не помечена явно как слабая.
Параметр Last-Modified time при использовании в качестве валидатора запроса является неявно слабым, если невозможно установить, что он сильный, используя следующие правила:
валидатор сравнивается исходным сервером с текущим рабочим валидатором для данного объекта и,
исходный сервер твердо знает, что соответствующий объект не изменялся дважды за секунду, к которой привязан настоящий валидатор.
Или:
валидатор предполагается использовать клиентом в заголовке If-Modified-Since или If-Unmodified-Since, так как клиент имеет запись в кэше для соответствующего объекта, и
эта запись в кэш включает в себя значение Date, которое определяет время, когда исходный сервер послал оригинал запроса, и
предлагаемый параметр Last-Modified time соответствует моменту времени, по крайней мере, на 60 секунд раньше значения Date.
Или:
валидатор сравнивается промежуточным кэшем с валидатором, запомненным в записи для данного объекта, и
эта запись в кэше включает в себя значение Date, которое определяет время, когда исходный сервер послал оригинал запроса, и
предлагаемый параметр Last-Modified time соответствует моменту времени, по крайней мере, на 60 секунд раньше значения Date.
Этот метод базируется на том факте, что, если два различных отклика были посланы исходным сервером в пределах одной и той же секунды, но оба имеют одно и то же время Last-Modified, то, по крайней мере, один из этих откликов имеет значение Date, равное его времени Last-Modified. Произвольный 60-секундный лимит предохраняет против того, что значения Date и Last-Modified сгенерированы с использованием различных часов или в несколько разные моменты времени при подготовке отклика. Конкретная реализация может использовать величину больше 60 секунд, если считается, что 60 секунд слишком мало.
Кэш или исходный сервер, получающий условный запрос кэша, отличный от GETзапроса, должен использовать функцию сильного сравнения, чтобы оценить условие.
