- •Лекция 1 информатика – предмет и задачи
- •1 Появление и развитие информатики
- •2 История развития предметной области информатики
- •2.1 Информатика как гуманитарная наука
- •2.2 Информатика как техническая наука
- •2.3 Информатика как естественная наука
- •3 Структура информатики
- •4 Информационные ресурсы и информационные технологии
- •4.1 Информационный ресурс
- •4.2 Информационные технологии.
- •5 Цель и задачи дисциплины информатики
- •Лекция 2 математические основы информатики
- •1 Системы счисления
- •1.1 Основные понятия
- •1.2 Системы счисления, используемые для общения с компьютером.
- •1.4 Арифметические операции в позиционных системах счисления.
- •2 Числовая система эвм
- •2.1 Форматы данных
- •2.2 Числа в формате с фиксированной запятой
- •2.3 Числа в формате с плавающей запятой
- •Лекция 3 информация
- •1 Что такое информация
- •2 Свойства информации
- •2.1 Внешние свойства информации.
- •2.2 Внутренние свойства информации
- •3 Количество информации
- •3.1 Энтропийная характеристика информации
- •3.2 Объемный (символьный) метод определения количества информации
- •3.3 Алгоритмический метод определения количества информации
- •4 Классификация информационных объектов.
- •4.1 Иерархическая система
- •4.2 Фасетная система
- •4.3 Дескрипторная система классификации
- •Лекция 4 Кодирование информации в эвм
- •1 Кодирование символьной информации в эвм
- •2 Представление графической информации
- •3 Представление звуковой информации
- •Лекция 5 Логические основы построения цифровых автоматов
- •1 Аппарат булевой алгебры
- •2 Законы алгебры логики
- •3 Логический синтез переключательных и вычислительных схем
- •4 Основы элементной базы цифровых автоматов
- •Лекция 6 архитектура и структура компьютера
- •1 Принципы построения компьютера
- •1.1 Принцип двоичного кодирования.
- •1.2 Принцип однородности памяти.
- •1.3 Принцип адресности.
- •1.4 Принцип программного управления.
- •2 Классическая архитектура эвм
- •3 Система команд эвм
- •3.1 Порядок выполнения команды
- •4 Виды архитектур эвм
- •4.1 Классификация по Флинну
- •4.1.1 Однопроцессорная архитектура
- •4.1.2 Многопроцессорная архитектура
- •4.1.3 Архитектура с параллельными процессорами.
- •4.1.4 Многопроцессорная обработка misd
- •4.1.5 Многомашинная вычислительная система.
- •4.1.6 Принцип открытой архитектуры.
- •5 Базовая аппаратная конфигурация
- •5.1 Системный блок
- •5.2 Видеосистема компьютера
- •5.2.1 Монитор на базе электронно-лучевой трубки
- •5.2.2 Газоразрядные мониторы
- •5.2.3 Жидкокристаллические мониторы lcd (Liquid Crystal Display)
- •5.2.4 Сенсорный экран
- •5.3 Клавиатура
- •5.4 Манипуляторы
- •Лекция 7 Хранение информации
- •1 Основные виды памяти и классификация зу
- •2 Оперативные запоминающие устройства
- •3 Постоянные запоминающие устройства
- •4 Зу с последовательным доступом
- •5 Структура хранения данных
- •5.1 Файловая система fat
- •5.2 Файловая система ntfs
- •Лекция 8 периферийные устройства персонального компьютера
- •1 Устройства ввода данных
- •1.1 Устройства ввода знаковых данных
- •1.2 Устройства ввода графических данных
- •2 Устройства вывода данных
- •2.1 Матричные принтеры
- •2.2 Лазерные принтеры.
- •2.3 Светодиодные принтеры
- •2.4 Струйные принтеры.
- •3 Устройства хранения данных
- •3.1 Накопители на гибких магнитных дисках
- •3.2 Накопители на жестких магнитных дисках
- •3.3 Накопители на оптических и магнитооптических дисках
- •3.4 Flash-накопители
- •4 Устройства обмена данными
- •4.1 Модем
- •Лекция 9. Программное обеспечение и его основные характеристики
- •1 Классификация программного обеспечения
- •2 Прикладное программное обеспечение
- •2.1 Универсальное прикладное по
- •2.2 Специализированное прикладное по
- •3 Пакеты прикладных программ
- •4 Проблемно-ориентированные, интегрированные и методо-ориентированные пакеты прикладных программ
- •4.1 Проблемно-ориентированные пакеты прикладных программ
- •4.1.1 Системы обработки текстов (текстовые редакторы).
- •4.1.2 Системы обработки электронных таблиц.
- •4.1.3 Системы управления базами данных
- •4.1.4 Системы деловой графики
- •4.1.5 Организаторы работ
- •4.1.6 Пакеты программ мультимедиа
- •4.1.7 Системы автоматизации проектирования
- •4.1.8 Группа финансовых программ
- •4.2 Интегрированные и методо-ориентированные пакеты прикладных программ
- •4.2.1 Интегрированные ппп
- •4.2.1. Полносвязанные интегрированные пакеты
- •4.2.2 Объектно-связанные интегрированные пакеты
- •4.3 Методо-ориентированные ппп.
- •5 Программный продукт
- •Лекция 10 Системное программное обеспечение эвм
- •1 Классификация системного по
- •2 Виды и основные функции операционных систем
- •3 Взаимодействие с аппаратными средствами
- •3.1 Средства проверки дисков
- •3.2 Средства управления виртуальной памятью
- •3.3 Средства кэширования дисков
- •3.4 Средства резервного копирования данных
- •4 Наиболее распространенные операционные системы
- •4.1 Характеристика операционной системы windows
- •4.1.2 Многозадачность и многопоточность
- •4.1.3 Графический пользовательский интерфейс
- •4.1.4 Использование виртуальной памяти
- •4.3 Характеристика операционной системы Linux
- •5 История развития ос Windows
- •Лекция 11 инструментальное по
- •1 Инструментарий технологии программирования
- •2 Языки программирования
- •2.1 Машинные языки
- •2.2 Машинно-ориентированные языки
- •2.3 Языки высокого уровня
- •3 Виды языков программирования высокого уровня
- •3.1. Процедурный (алгоритмический) язык
- •3.2 Функциональный (аппликативный) язык
- •3.3 Логический (реляционный) язык
- •3.4 Объектно-ориентированный язык
- •3.5 Проблемно – ориентированный язык
- •4 Характеристика языков программирования
- •4.1 Паскаль - язык структурно-ориентированного программирования
- •4.2 Бейсик - язык операционально и проблемно - ориентированного программирования
- •4.3 Общая характеристика языка Си
- •4.4 Общая характеристика языка Пролог
- •4.5 Общая характеристика языка Лисп
- •Лекция 12 системы программирования
- •1 Средства создания программ
- •1.1 Язык программирования
- •1.2 Текстовый редактор
- •1.3 Трансляторы
- •1.4 Библиотеки стандартных подпрограмм
- •1.5 Редактор связей
- •1.6 Загрузчик
- •1.7 Вспомогательные программы
- •2 Интегрированные программные среды
- •2.1 Интегрированные системы программирования
- •2.2 Среды быстрого проектирования
- •3 Виды систем программирования
- •3.1 Процедурное (алгоритмическое или императивное) программирование
- •3.2 Структурное программирование
- •3.3 Объектно-ориентированное программирование
- •3.4 Декларативное программирование
- •3.4.1 Функциональное программирование
- •3.4.2 Логическое программирование
- •Лекция 13 основные понятия теории алгоритмов
- •1 Определение алгоритма и понятие его исполнителя
- •2 Классы моделей алгоритмов.
- •3 Формы записи алгоритмов
- •3.1 Словесный способ записи
- •3.2 Графическое представление алгоритмов
- •3.3 Псевдокод
- •3.4 Программный способ записи алгоритмов
- •4 Проектирование программ
- •4.1 Постановка задачи
- •4.2 Проектирование программы
- •4.3 Построение модели
- •4.4 Разработка алгоритма
- •4.5 Реализация алгоритма
- •4.6 Анализ алгоритма и его сложности
- •4.7 Тестирование программы
- •4.8 Документирование
- •Лекция 14 вычислительные сети
- •1 Принципы построения
- •2 Классификация вычислительных сетей
- •3 Архитектура сети
- •4 Способы передачи данных
- •4.1 Организация обмена информацией в сетях
- •4.1.1 Пакеты.
- •4.1.2 Уровни связи.
- •4.2 Носители сигналов
- •5 Программное обеспечение вычислительных сетей
- •5.1 Модели взаимодействия в сетях
- •Лекция 15 глобальная сеть internet
- •1 История сети internet
- •1.1 Компоненты Internet
- •2 Протоколы сети internet
- •2.1 Протокол tcp.
- •2.2 Протокол ip.
- •3 Способы организации передачи информации
- •3.1 Система адресации в Internet
- •4 Услуги, предоставляемые сетью internet
- •4.1 Электронная почта
- •4.2 World-wide-web (Всемирная информационная сеть)
- •4.3 Телеконференции Usenet
- •5 Компьютерный вирус
- •5.1 Разновидности компьютерных вирусов
- •5.1.1 Деление по способу заражения
- •5.1.2 Деление по поражаемым объектам
- •6 Антивирусные средства
- •Лекция 16 искусственный интеллект и экспертные системы
- •1 Направления исследований в области искусственного интеллекта
- •1.1 Развитие искусственного интеллекта как научного направления
- •1.2 История исследований и разработок в области систем искусственного интеллекта.
- •1.3 Направления искусственного интеллекта
- •2 Представление знаний в системах искусственного интеллекта
- •2.1 Данные и знания.
- •2.2 Представление знаний.
- •2.3 Моделирование рассуждений.
- •3 Инструментарий программирования искусственного интеллекта
- •3.1 Традиционные языки программирования.
- •3.2 Языки искусственного интеллекта.
- •4 Характеристика экспертных систем
- •4.1 Основные понятия и определения
- •4.2 Применение экспертной системы
- •5 Классификация экспертных систем
- •5.1 Схема классификации
- •5.2 Классификация по решаемой задаче
- •5.3 Классификация по связи с реальным временем
- •5.4 Классификация по типу эвм
- •5.5 Классификация по степени интеграции с другими программами
Лекция 6 архитектура и структура компьютера
Принципы построения компьютера;
Классическая архитектура ЭВМ;
Система команд ЭВМ;
Виды архитектур ЭВМ
Базовая аппаратная конфигурация
1 Принципы построения компьютера
Со времени появления в 40-х годах XX века первых электронных цифровых вычислительных машин технология их производства была значительно усовершенствована, существенно улучшились их характеристики, значительно снизилась стоимость. Однако, несмотря на успехи, достигнутые в области технологии, существенных изменений в базовой структуре и принципах работы вычислительных машин не произошло. Так, в основу построения подавляющего большинства современных компьютеров положены общие принципы функционирования универсальных вычислительных устройств, сформулированные еще в 1945 г. американским ученым Джоном фон Нейманом.
1.1 Принцип двоичного кодирования.
В компьютерах используется двоичная система счисления, которая основана на двух цифрах,«0» и «1». Информация любого типа может быть закодирована с использованием двух цифр и помещена в оперативную или постоянную память компьютера. Впервые принцип двоичного счисления был сформулирован в 17 веке немецким математиком Готфридом Лейбницем.
Использование в ЭВМ двоичных кодов продиктовано в первую очередь спецификой электронных схем, применяемых для передачи, хранения и преобразования информации. В этом случае конструкция ЭВМ предельно упрощается, и ЭВМ работает наиболее надежно (устойчиво). Совокупности нолей и единиц (битов информации), используемые для представления отдельных чисел, команд и т. п., рассматриваются как самостоятельные информационные объекты и называются словами.
Слово обрабатывается в ЭВМ как одно целое — как машинный элемент информации.
1.2 Принцип однородности памяти.
Революционной идеей является предложенный Нейманом принцип «хранимой программы». Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Все слова, представляющие числа, команды и прочие объекты, выглядят в ЭВМ совершенно одинаково, и сами по себе неразличимы. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.
Над командами можно выполнять такие же действия, как и над данными. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции — перевода текста программы с языка программирования высокого уровня на язык конкретной машины.
1.3 Принцип адресности.
Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.
Чтобы записать слово в память, необходимо указать адрес ячейки, отведенной для хранения соответствующей величины. Чтобы выбрать слово из памяти (прочитать его), следует опять же указать адрес ячейки памяти. То есть адрес ячейки, в которой хранится величина или команда, становится машинным идентификатором (именем) величины и команды.
Таким образом, единственным средством для обозначении величин и команд в ЭВМ являются адреса, присваиваемые величинам и командам в процессе составления программы вычислений. При этом выборка (чтение) слова из памяти не разрушает информацию, хранимую в ячейке. Это позволяет любое слово, записанное однажды, читать какое угодно число раз, т. е. из памяти выбираются не слова, а копии слов.
Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.
