- •Часть 1
- •Введение
- •Раздел 1. Кинематика
- •Глава 1. Кинематика точки
- •Векторный способ задания движения точки
- •Задание движения точки в декартовых координатах
- •Задание движения точки естественным способом
- •Глава 2. Простейшие движения твердого тела
- •Поступательное движение твердого тела
- •2.2. Вращательное движение твердого тела
- •2.2.1. Основные понятия
- •Глава 3. Сложное движение точки
- •Основные понятия
- •Связь между полной и локальной производными от вектора
- •Теорема сложения скоростей при сложном движении точки
- •Теорема сложения ускорений при сложном движении точки
- •Глава 4. Плоское движение твердого тела
- •Основные понятия
- •4.2. Скорости точек тела при плоском движении
- •4.3. Мгновенный центр скоростей
- •Основные способы построения мцс
- •4.4. Ускорения точек тела при плоском движении
- •4.5. Мгновенный центр ускорений
- •4.6. Вычисление угловой скорости и углового ускорения тела при плоском движении
- •Основные способы вычисления угловой скорости
- •Основные способы вычисления углового ускорения
- •Раздел 2. Статика
- •Глава 1. Введение в статику
- •1.1. Основные понятия
- •1.2. Аксиомы статики
- •1.3. Основные виды связей и их реакции
- •Глава 2. Система сходящихся сил
- •2.1. Классификация систем сил
- •Приведение сходящейся системы сил к равнодействующей
- •2.3. Уравнения равновесия
- •Глава 3. Момент силы относительно точки и оси
- •3.1. Векторный момент силы относительно точки
- •3.2. Момент силы относительно оси
- •3.3. Алгебраический момент силы относительно точки
- •Глава 4. Пара сил и ее свойства
- •4.1. Понятие о паре сил
- •4.2. Основные свойства пар сил
- •Глава 5. Приведение системы сил к центру.
- •5.1. Приведение произвольной пространственной системы сил к центру
- •5.2. Частные случаи приведения системы сил к центру
- •Глава 6. Уравнения равновесия
- •6.1. Независимые уравнения равновесия для различных систем сил
- •6.2. Различные формы независимых уравнений равновесия для плоской произвольной системы сил
- •Из третьего уравнения найдем
- •После этого из второго уравнения определим
- •6.3. Непрерывно распределенная нагрузка
- •6.4. Равновесие системы тел
- •Глава 7. Трение и фермы
- •7.1. Трение скольжения
- •7.2. Трение качения
- •7.3. Расчет ферм
- •Глава 8. Центр тяжести
- •8.1. Основные понятия
- •8.2. Нахождение центров тяжести простейших однородных тел
- •8.3. Методы нахождения центров тяжести тел
- •Библиографический список
- •Раздел 1. Кинематика 4 Глава 1. Кинематика точки 4
- •Глава 2. Простейшие движения твердого тела 14
- •Глава 3. Сложное движение точки 23
- •Глава 4. Плоское движение твердого тела 37 4.1. Основные понятия 37
- •Глава 7. Трение и фермы 93
- •Глава 8. Центр тяжести 103
Глава 6. Уравнения равновесия
6.1. Независимые уравнения равновесия для различных систем сил
Если твердое тело под действием некоторой системы сил находится в равновесии, то для этой системы сил главный вектор и главный момент, вычисленный относительно произвольной точки О, равны нулю. Тогда из (69), (70) получим уравнения равновесия системы сил в векторной форме:
(71)
(72)
Если векторные равенства (71), (72) записать в проекциях на выбранные оси координат, то из двух векторных уравнений получим 6 алгебраических уравнений равновесия:
(73)
В формулах (73) суммирование производится для всех сил системы, но для краткости записи у знака суммы не указаны границы изменения индекса суммирования k. Будем использовать такое упрощение записи и в дальнейшем.
Отметим, что записанные выше уравнения равновесия (73) являются независимыми только для систем сил наиболее общего вида – пространственных произвольных. Для более простых систем сил независимых уравнений равновесия будет меньше шести. Ниже в таблице приведены независимые уравнения равновесия для систем сил различного вида. Эти независимые уравнения помечены в таблице знаком (+). Отметим, что для плоских систем сил, расположенных в плоскости Oxy, вычисление моментов сил относительно оси z эквивалентно вычислению алгебраических моментов сил относительно точки, выбранной в плоскости Oxy.
Уравнения равновесия Вид системы сил |
|
|
|
|
|
|
Кол-во незави-симых ур-ий |
|
Простран-ственная |
Произвольная |
+ |
+ |
+ |
+ |
+ |
+ |
6 |
Параллельная (
|
– |
– |
+ |
+ |
+ |
– |
3 |
|
Сходящаяся |
+ |
+ |
+ |
– |
– |
– |
3 |
|
Плоская (в пл-ти OXY) |
Произвольная |
+ |
+ |
– |
– |
– |
+ |
3 |
Параллельная ( |
– |
+ |
– |
– |
– |
+ |
2 |
|
Сходящаяся |
+ |
+ |
– |
– |
– |
– |
2 |
|
Таблица 1. Независимые уравнения равновесия для различных систем сил
Докажем одну важную теорему статики.
Теорема Вариньона
Если система сил имеет равнодействующую, то векторный момент равнодействующей силы относительно какого-либо центра равен геометрической сумме векторных моментов всех сил системы, вычисленных относительно того же центра.
Доказательство
Пусть
на твердое тело действует система сил
,
имеющая равнодействующую
(см. рис. 78)
Рис. 78
Добавим
к заданной системе сил уравновешивающую
силу
,
равную по величине, противоположно
направленную и имеющую общую линию
действия по отношению к равнодействующей
силе
.
Тогда полученная система сил будет
эквивалентна нулю
и должна удовлетворять уравнениям равновесия. В частности, сумма векторных моментов сил этой системы относительно любой точки О равна нулю:
но
Тогда из предыдущей формулы получим
откуда следует утверждение теоремы:
Отметим, что аналогичное утверждение справедливо для алгебраических моментов и моментов сил относительно осей.

)
)