- •Введение
- •Условные обозначения на чертеже
- •Тема 1.1 Введение в предмет начертательной геометрии и образование проекционного чертежа
- •1.1.1 Введение в предмет начертательная геометрия
- •1.1.2 Метод проецирования. Центральное и параллельное проецирование. Основные свойства. Прямоугольное (ортогональное) проецирование
- •Центральное проецирование
- •Параллельное проецирование
- •Свойства центрального и параллельного проецирования
- •Ортогональное (прямоугольное) проецирование
- •1.1.3 Точка в системе двух и трех плоскостей проекций. Ортогональные проекции точки и система прямоугольных координат ( система координат Декарта)
- •Тема 1.2 Проекции отрезка прямой линии, положение прямой относительно плоскостей проекций, взаимное положение двух прямых, проецирование прямого угла
- •1.2.1 Прямая. Положение прямой относительно плоскостей проекций (прямые общего и частного положений). Определение натуральной величины отрезка прямой. Точка на прямой. Следы прямой
- •Прямая общего положения
- •Прямые частного положения
- •Определение натуральной величины отрезка и угла ее наклона прямой к плоскостям проекций
- •Точка на прямой. Следы прямой
- •1.2.2 Взаимное положение прямых (параллельные, пресекающиеся, скрещивающиеся). Конкурирующие точки
- •Конкурирующие точки
- •Тема 1.3 Проекции плоскости, положение плоскости относительно плоскостей проекций, характерные линии плоскости
- •Следы плоскости
- •Характерные прямые плоскости – линии уровня и линии наибольшего наклона плоскости
- •Точка и прямая в плоскости (построение их недостающих проекций)
- •Тема 1.4 Взаимное положение прямой и плоскости, двух плоскостей
- •1.4.1 Параллельность прямой и плоскости, двух плоскостей Прямая линия параллельная плоскости
- •Взаимно параллельные плоскости
- •1.4.2 Перпендикулярность прямой и плоскости: позиционные и метрические задачи на использование построения перпендикуляра к плоскости
- •Взаимно перпендикулярные плоскости
- •1.4.3 Пересечение прямой и плоскости, двух плоскостей в частных случаях и в общем случаи Прямая линия, пересекающаяся с плоскостью частного положения
- •Пересечение прямой с плоскостью общего положения
- •Пересечение плоскости частного положения с плоскостью общего положения
- •Пересечение двух плоскостей общего положения
- •Тема 1.5 Преобразование чертежа заменой плоскостей проекций, вращением и плоскопараллельным перемещением
- •1.5.1 Метод замены плоскостей проекций (замена одной и двух плоскостей проекций, четыре основные задачи преобразования чертежа)
- •1.5.2 Метод вращения (вращение вокруг проецирующих прямых и прямых уровня – ось вращения, центр вращения, радиус вращения, плоскость вращения) Метод вращения вокруг проецирующей прямой
- •Способ вращения вокруг линии уровня
- •1.5.3 Плоскопараллельное перемещение
- •Тема 1.6 Поверхности – образование, изображение на чертеже, сечения плоскостями
- •Способы задания поверхности на чертеже
- •Аналитический
- •Кинематический
- •Каркасный
- •Образование и обзор кривых поверхностей (линейчатые и нелинейчатые, развертываемые и неразвертываемые)
- •1.6.2 Многогранники: правильные и полуправильные. Их сечения проецирующими плоскостями
- •Пересечение многогранников плоскостями
- •Взаимное пересечение многогранников
- •1.6.3 Поверхности вращения. Примеры поверхностей вращения
- •Тема 1.7 Пересечение поверхностей
- •1.7.1 Сечение поверхностей плоскостями
- •1.7.2 Пересечение прямой с поверхностью
- •1.7.3 Пересечение поверхностей
- •Тема 1.8 Развертки поверхностей
- •1.8.1 Построение развертки поверхности простейших геометрических тел
- •1.8.2 Построение развертки наклонных призматических, цилиндрических и конических поверхностей
- •1.8.3 Построение развертки поверхности сферы
- •Тема 1.9 Аксонометрическое проецирование
- •Заключение
- •Список используемых источников
1.8.3 Построение развертки поверхности сферы
Построение
развертки поверхности сферы выполняется
способом вспомогательных цилиндров
(рисунок 98). Этот способ заключается в
следующем: заданная поверхность сферы
разбивается с помощью меридианов на
равные между собой части или доли. Каждая
доля заменяется цилиндрической
поверхностью, которая касательна к
поверхности сферы в точках главного
меридиана доли.
Рисунок 98 – Построение развертки поверхности сферы
Развертка поверхности сферы выполняется в следующем порядке:
поверхность сферы делят на 6 частей горизонтально-проецирующими плоскостями, которые являются меридианами;
описывают вокруг сферы цилиндрическую поверхность, ось которой проходит через центр сферы перпендикулярно П2, таким образом, часть сферы заменяют частью цилиндрической поверхности. На горизонтальную плоскость проекций она проецируется в виде треугольника 11, 61, 71, а на фронтальную – в виде дуги окружности;
делят фронтальную проекцию дуги окружности на 6 равных частей. Величина отрезков h1, h2, h3 будет натуральной на плоскости проекций П2. Строят горизонтальные проекции образующих, проходящих через соответствующие точки деления;
находят натуральную величину образующих 2131, 4151 и 61-71 на плоскости проекций П1, так как образующие параллельны горизонтальной плоскости проекций;
для построения развертки главный меридиан разворачивают в прямую линию и на ней откладывают вверх и вниз отрезки, равные h1, h2 и h3, а через полученные точки откладывают вправо и влево отрезки, равные у6 - у7, у4 - у5, у2 и у3;
соединив плавной кривой концы отрезков, получают развертку одной доли, т.е. 1/6 части поверхности сферы. Полная развертка поверхности сферы будет состоять из шести одинаковых долей.
Тема 1.9 Аксонометрическое проецирование
Аксонометрические изображения обладают большей наглядностью, чем ортогональные проекции, и являются дополнительными к основному проекционному чертежу.
Аксонометрические
изображения образуются путем проецирования
геометрического объекта вместе с
ортогональной системой плоскостей
проекций и осей на некую аксонометрическую
плоскость, называемую картинной. На
рисунке 99 изображена схема получения
аксонометрических проекций.
Рисунок 99 – Образование аксонометрической проекции
Размеры проецируемого тела на аксонометрической проекции искажаются, что учитывается коэффициентами искажения k, m и n. В зависимости от соотношения коэффициентов аксонометрии делятся на изометрию, диметрию и триметрию.
Аксонометрических изображений может быть получено великое множество. Однако, стандартом (ГОСТ 2.317-69) предусмотрены только пять аксонометрических проекций:
1) Прямоугольная изометрия;
2) Прямоугольная диметрия;
3) Косоугольная фронтальная изометрия;
4) Косоугольная фронтальная диметрия;
5) Косоугольная горизонтальная изометрия.
Самое широкое распространение в конструкторской практике получили прямоугольная изометрия, прямоугольная диметрия и косоугольная фронтальная диметрия.
Рассмотрим прямоугольную изометрию. Она строится в аксонометрических осях OX, OY, OZ, располагаемых под углом 120 градусов. Коэффициенты искажения по осям одинаковы и равны 1:1. Это означает, что размеры детали переносятся с проекционного чертежа на аксонометрию без искажения и пересчета.
В
диметрических аксонометрических
проекциях (прямоугольная диметрия,
косоугольная фронтальная диметрия) оси
ОХ, OY, OZ располагаются под различными
углами друг к другу. Коэффициенты
искажения по осям OX,OZ одинаковы и равны
1:1. Коэффициент искажения по оси OY равен
1:2. Это означает, что размеры детали по
оси OY, взятые с проекционного чертежа,
необходимо пересчитать, прежде чем
переносить на аксонометрию. На рисунке
100 показано направление аксонометрических
осей в различных видах аксонометрий и
вычерчивание окружностей в аксонометрических
плоскостях XOZ, XOY, и ZOY.
Рисунок 100 – Виды аксонометрических проекций
На рисунке 101 показано направление линий штриховки, если на аксонометрической проекции выполнен разрез (чаще всего на аксонометрической проекции выполняют вырез части детали, например, одной четверти).
Рисунок
101 –Штриховка
сечений в аксонометрических проекциях
На
рисунке 102 приведены примеры различных
аксонометрических проекций детали. На
рисунке 103 приведен пример чертежа узла
в прямоугольной изометрии с вырезом
одной четверти.
Рисунок 102 – Примеры аксонометрических проекций
Р
исунок
103 –
Аксонометрическая проекция узла
