Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Расчет трансформатора_Козлов.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
729.73 Кб
Скачать

1 Расчет сетевого трансформатора источника питания

В линейных источниках питания, ставших уже "классическими", основной элемент - сетевой трансформатор, обычно понижающий, который уменьшает сетевое напряжение до требуемого уровня. О том, как правильно его рассчитать (выбрать магнитопровод, рассчитать диаметр обмоточного провода, число витков в обмотках и т. д.), пойдет речь в предлагаемой статье.

1.1 Выбор магнитопровода

По конструктивному исполнению магнитопроводы для сетевых трансформаторов подразделяют на броневые, стержневые и тороидальные, а по технологии изготовления - на пластинчатые (рис. 1) и ленточные (рис. 2). На рис. 1 и 2 обозначены магнитопроводы: а) - броневые, б) - стержневые, в) - тороидальные.

В трансформаторах малой (до З00 Вт) и средней мощности (до 1000 Вт) чаще используют ленточные магнитопроводы [1]. А среди ленточных наиболее применимы стержневые магнитопроводы. Они имеют ряд преимуществ по сравнению, например, с броневыми [2]:

  1. Меньшая приблизительно на 25 % масса при одинаковой мощности трансформатора.

  2. Меньшая примерно на 30 % индуктивность рассеяния.

  3. Выше КПД.

  4. Меньшая чувствительность к внешним электромагнитным полям, поскольку ЭДС помех, наведенные в обмотках, которые расположены на разных стержнях, имеют противоположные знаки и взаимно компенсируются.

  5. Большая поверхность охлаждения обмоток.

Однако стержневым магнитопроводам присущи и недостатки:

  1. Все еще значительная индуктивность рассеяния.

  2. Необходимость изготовления двух катушек.

  3. Меньшая защищенность катушек от механического воздействия.

В тороидальных трансформаторах практически весь магнитный поток проходит по магнитопроводу, поэтому индуктивность рассеяния у них минимальная, однако сложность изготовления обмоток весьма высока.

На основании вышесказанного выбираем стержневой ленточный магнитопровод [3]. Подобные магнитопроводы изготавливают следующих типов: ПЛ-стержневой ленточный; ПЛВ - стержневой ленточный наименьшей массы; ПЛМ - стержневой ленточный с уменьшенным расходом меди; ПЛР - стержневой ленточный наименьшей стоимости.

На рис. 3 показаны обозначения габаритных размеров магнитопровода: А - ширина; Н - высота; а - толщина стержня; b - ширина ленты; с - ширина окна; h - высота окна; h1 - высота ярма.

Стержневым магнитопроводам присвоено сокращенное обозначение, например, ПЛ8х 12,5x16, где ПЛ - П-образный ленточный, 8 - толщина стержня, 12,5 - ширина ленты, 16 - высота окна. Размеры магнитопроводов ПЛ и ПЛР приведены в табл. 1 и 2.

1.2 Варианты размещения катушек на магнитопроводе

Различные варианты расположения катушек на стержнях магнитопровода сравним по одному из основных параметров трансформаторов - индуктивности рассеяния, которую рассчитаем по формуле из [2]

где μ0 = 4π·10-7 Гн/м - магнитная постоянная; w, - число витков первичной обмотки; вср.об - средняя длина витка обмоток, см; b - толщина обмоток, см; h - высота обмотки, см. Эта формула получена при условии, что обмотки - цилиндрические, не секционированы и расположены концентрически. Схемы соединения обмоток для всех вариантов показаны на рис. 4.

Сравнительные расчеты проведем для трансформатора на магнитопроводе ПЛx10x12,5x40, имеющего одну первичную и одну вторичную обмотки. Чтобы все расчетные варианты находились в одинаковых условиях, примем толщину обмоток b = с/4 и число витков первичной обмотки w1 = 1000.

Рассмотрим первый вариант, когда первичная и вторичная обмотки расположены на одном стержне (рис. 4, а). Чертеж катушки показан на рис. 5. Сначала рассчитаем среднюю длину витка обмоток

а затем индуктивность рассеяния катушки первого варианта

Во втором варианте первичная и вторичная обмотки разделены на две равные части, которые размещены на двух стержнях (рис. 4, б). Каждая катушка состоит из половины обмотки W1 и половины w2. Чертеж катушек показан на рис. 6. Вычислим индуктивность рассеяния одной катушки (W1 = 500), а затем результат удвоим, поскольку катушки одинаковы:

Две первичные обмотки в третьем варианте расположены в двух катушках на разных стержнях, каждая из которых содержит по 1000 витков. Обе первичные обмотки соединены параллельно. Вторичная обмотка также размещена в двух катушках на разных стержнях, причем возможны два случая: две полуобмотки с полным числом витков, соединенные параллельно (рис. 4, в), или вторичная обмотка разделена на две полуобмотки с вдвое меньшим числом витков, соединенные последовательно (рис. 4, г). Чертеж катушек показан на рис. 6. В этом варианте индуктивность рассеяния такая же, как и во втором варианте: LS3 = LS2 = 2,13 мГн.

Следует помнить, что во втором и третьем вариантах первичные и вторичные обмотки и полуобмотки должны быть включены согласно, чтобы создаваемые ими магнитные потоки в магнитопроводе имели одинаковое направление. Другими словами, магнитные потоки должны суммироваться, а не вычитаться. На рис. 7, а показано неправильное подключение, а на рис. 7, б - правильное.

Необходимость соблюдения правил соединения обмоток и полуобмоток - недостаток второго и третьего вариантов. Кроме того, в третьем варианте суммарный магнитный поток от первичной обмотки вдвое больше по сравнению с другими, что может привести к насыщению магнитопровода и, как следствие, к искажению синусоидальной формы напряжения. Поэтому применять третий вариант включения обмоток на практике следует осторожно.

В четвертом варианте первичная обмотка полностью расположена на одном стержне магнитопровода, а вторичная - на другом (рис. 4, д). Чертеж катушек показан на рис. 8. Поскольку обмотки расположены не концентрически, для расчета индуктивности рассеяния воспользуемся формулой из [2]:

где b = с/4 - толщина обмоток, см; Rвн = воб/(2π) - внешний радиус обмотки, см; воб = 2а+2b+2πb - наружная длина витка обмотки, см. Вычислим наружную длину витка и внешний радиус обмотки: = 6,5 см; Rвн = 1,04 см. Подставляя рассчитанные значения в формулу для вычисления индуктивности рассеяния, получим LS4 = 88,2 мГн.

Кроме рассмотренных четырех существует еще много других вариантов расположения обмоток на стержнях магнитопровода, однако во всех остальных случаях индуктивность рассеяния больше, чем во втором и третьем вариантах.

Анализируя полученные результаты, можно сделать следующие выводы:

  1. Индуктивность рассеяния минимальна во втором и третьем вариантах расположения обмоток и находится в таком соотношении: LS4>>LS1>>LS2 = LS3.

  2. У трансформаторов третьего варианта две одинаковые первичные обмотки, поэтому они более тяжелые, трудоемкие и дорогие, чем во втором варианте.

Следовательно, при изготовлении трансформаторов малой мощности следует выбирать схему соединения и расположение обмоток, рассмотренные во втором варианте. Вторичные полуобмотки можно соединять и последовательно, если необходимо получить более высокое напряжение на выходе, и параллельно, если требуется больший выходной ток.

1.3 Краткие сведения о материалах магнитопроводов

До сих пор мы не учитывали потери в реальном трансформаторе, которые складываются из потерь в магнитопроводе - на вихревой ток и перемагничивание (гистерезис): в расчетах их учитывают как мощность потерь в стали Рст, и потери в обмотках - как мощность потерь в меди Рм. Итак, суммарная мощность потерь в трансформаторе равна:

P∑ = Рст + Рм = Рв.т + Рг + Рм,

где Рв.т - мощность потерь на вихревой ток; Рг - мощность потерь на гистерезис.

Для их уменьшения сталь подвергают термообработке - удаляют углерод, а также легируют - добавляют кремний, алюминий, медь и другие элементы. Все это повышает магнитную проницаемость, уменьшает коэрцитивную силу и, соответственно, потери на гистерезис. Кроме того, сталь подвергают холодной или горячей прокатке для получения необходимой структуры (текстуры проката).

В зависимости от содержания легирующих элементов, структурного состояния, магнитных свойств стали маркируют четырехзначными числами, например, 3412.

Первая цифра означает класс электротехнической стали по структурному состоянию и классу прокатки: 1 - горячекатаная изотропная; 2 - холоднокатаная изотропная; 3 - холоднокатаная анизотропная с ребровой текстурой.

Вторая цифра - процент содержания кремния: 0 - нелегированная сталь с суммарной массой легирующих элементов не более 0,5 %; 1 - легированная с суммарной массой свыше 0,5, но не более 0,8 %; 2 - 0,8...1,8 %; 3 - 1,8...2,8 %; 4 - 2,8...3,8 %; 5 - 3,8...4,8 %.

Третья цифра - группа по основной нормируемой характеристике (удельные потери и магнитная индукция): 0 - удельные потери при магнитной индукции 1,7 Тл на частоте 50 Гц (Pij/so); 1 - потери при магнитной индукции 1,5 Тл на частоте 50 Гц (P1,5/50); 2 - при индукции 1 Тл на частоте 400 Гц (Р1/400); 6 - индукция в слабых магнитных полях при напряженности 0,4 А/м (В0,4); 7 - индукция в средних магнитных полях при напряженности 10 А/м (В10) или 5 А/м (В5).

Первые три цифры обозначают тип электротехнической стали.

Четвертая цифра - порядковый номер типа стали.

Магнитопроводы трансформаторов для бытовой техники изготавливают из холоднокатаной текстурованной стали марок 3411-3415 [3] с нормированными удельными потерями при магнитной индукции 1,5 Тл на частоте 50 Гц и удельным сопротивлением 60·10-8 Ом·м. Параметры некоторых марок электротехнической стали приведены в табл. 3.

Холоднокатаная электротехническая сталь обладает более высокими магнитными характеристиками. Кроме того, более гладкая поверхность позволяет увеличить коэффициент заполнения объема магнитопровода (ксТ) до 98 % [4].

2 Пример расчета трансформатора

2.1 Исходные данные

Рассчитать трансформатор, имеющий первичную и две вторичные обмотки, со следующими параметрами: эффективное (действующее) напряжение первичной обмотки U1 = 127 В; эффективное (действующее) напряжение вторичных обмоток U2 =6.3 U3 = 27.0 В; эффективный (действующий) ток вторичных обмоток I2 2.50А = I3 =0.65А . Частота сетевого напряжения f = 50 Гц.

Коэффициент трансформации равен отношению напряжения на первичной к напряжению на разомкнутой (ЭДС) вторичной обмотке. При этом пренебрегают погрешностью, возникающей из-за отличия ЭДС от напряжения на первичной обмотке:

где w1 и w2 - число витков, соответственно, первичной и вторичной обмоток; Е1 и Е2 - ЭДС первичной и вторичной обмоток.

Ток в первичной обмотке равен:

=( + ) / =(2.5+0,65) 6,3/27=0,7245А

Габаритная мощность трансформатора равна:

= ( + ∙ + ∙ )/2 = + ) + ∙ + ∙ =53,145Вт

В процессе расчета необходимо определить размеры магнитопровода, число витков всех обмоток, диаметр и примерную длину обмоточного провода, мощность потерь, полную мощность трансформатора, КПД, максимальные габариты и массу.