- •МатематичесКий анализ
- •МатематичесКий анализ учебное пособие
- •Содержание
- •Введение
- •Раздел 1 вступление в математический анализ.
- •1.1 Понятие функции
- •1.2 Предел числовой последовательности
- •1.3 Бесконечно малые и бесконечно большие величины
- •Вопросы для самопроверки
- •1.4 Предел функции
- •1.5 Раскрытие неопределенностей
- •1.6 Первый замечательный предел
- •1.7 Эквивалентные функции
- •1.8 Второй замечательный предел
- •1.9 Непрерывность функции
- •1.10 Свойства непрерывных функций
- •1.11 Односторонние пределы функции
- •1.12 Бесконечные пределы
- •1.13 Точки разрыва и их классификация
- •Вопросы для самопроверки
- •Раздел 2 дифференциальное исчисление функции одной переменной.
- •2.1 Понятие производной функции
- •Порядок нахождения производной
- •2.2 Свойства прозводной Постоянную можно вынести за знак производной
- •2.3 Производная сложной функции
- •2.4 Дифференцирование неявной функции
- •2.5 Логарифмическое дифференцирование
- •2.6 Дифференцирование функций, заданных параметрически
- •2.7 Производные высших порядков
- •2.8 Применение производных для исследования функций
- •Дифференциал функции
- •Основные свойства дифференциала
- •Теоремы о среднем
- •Раздел 3 дифференциальное исчисление функции нескольких переменных
- •3.1 Частное и полное приращение функции
- •3.2 Частные производные функции
- •3.3 Производные высших порядков
- •3.4 Дифференцирование сложной функции нескольких переменных
- •3.5 Дифференцирование неявной функции
- •3.6 Производная по направлению
- •Раздел 4 неопределенный интеграл
- •4.1 Первообразная функция и неопределенный интеграл
- •4.2 Простейшие свойства неопределенного интеграла
- •4.3 Таблица основных интегралов
- •4.4 Непосредственное интегрирование
- •4.5 Метод подстановки (замена переменной)
- •4.6 Интегрирование по частям
- •4.7 Интегрирование некоторых выражений, содержащих квадратный трехчлен
- •4.8 Интегрирование рациональных функций
- •Интегрирование некоторых иррациональных функций
- •4.10 Интегрирование тригонометрических функций
- •Раздел 5 определенный интеграл
- •Определенный интеграл как предел интегральной суммы
- •5.2 Простейшие свойства определенного интеграла.
- •5.3 Замена переменной в определенном интеграле
- •5.4 Интегрирование по частям в определенном интеграле
- •5.5 Несобственные интегралы
- •5.5.1 Интегралы с бесконечными пределами
- •5.5.2 Интегралы от непрерывных функций
- •Раздел 6 Дифференциальные уравнения. Ряды
- •6.1 Уравнение с разделяющимися переменными
- •6.2 Однородные уравнения
- •Линейные дифференциальные уравнения первого порядка
- •6.4 Дифференциальные уравнения второго порядка
- •Дифференциальные уравнения второго порядка с постоянными
- •6.6 Числовые ряды
- •6.7 Необходимый признак сходимости числового ряда
- •6.8 Достаточные признаки сходимости знакоположительных рядов
- •6.9 Знакочередующиеся ряды
- •6.10 Степенные ряды
- •6.11 Ряд Тейлора. Применение рядов в приближенных вычислениях
- •Комплексные задания для индивидуального решения
- •Вариант № 1
- •Вариант № 2
- •Вариант № 3
- •Вариант № 4
- •Вариант № 5
- •Вариант № 6
- •Вариант № 7
- •Вариант № 8
- •Вариант № 9
- •Вариант № 10
- •Вариант № 11
- •Вариант № 12
- •Вариант № 13
- •Вариант № 14
- •Вариант № 15
- •Вариант № 16
- •Вариант № 17
- •Вариант № 18
- •Вариант № 19
- •Вариант № 20
- •Вариант № 21
- •Вариант № 22
- •Вариант № 23
- •Вариант № 24
- •Вариант № 25
- •Вариант № 26
- •Вариант № 27
- •Вариант № 28
- •Вариант № 29
- •Вариант № 30
- •Литература
- •Учебное издание
- •Математический анализ
- •Сводный план – 2017г., позиция № 406
- •83050, Г. Донецк, ул. Щорса, 31
Вариант № 25
Провести частичные исследования функции в соответствии с требованием задач
Найти наибольшее значение функции
на промежутке
.
-
Ответ:
а)
0
б)
17
в)
20
г)
– 17
Для функции
найти точки минимума
-
Ответ:
а)
0
б)
4
в)
{0; 4}
г)
– 4
Найти точки перегиба графика функции
.
-
Ответ:
а)
0
б)
– 1
в)
нет
г)
1
Найти асимптоты графика функции .
-
Ответ:
а)
б)
в)
г)
,
Вариант № 26
Найти наибольшее значение функции
на промежутке
.
-
Ответ:
а)
– 3
б)
5
в)
3
г)
1
Для функции найти промежутки максимума.
-
Ответ:
а)
0
б)
4
в)
– 4
г)
2
Найти промежутки выпуклости графика функции
.
-
Ответ:
а)
б)
в)
г)
Найти асимптоты графика функции
.
-
Ответ:
а)
,
б)
,
в)
,
г)
нет
Вариант № 27
Провести частичные исследования функции в соответствии с требованием задач
Найти наибольшее значение функции
на промежутке
.
-
Ответ:
а)
– 2
б)
0
в)
г)
2
Для функции
определите промежутки убывания.
-
Ответ:
а)
б)
в)
г)
Найти точки перегиба графика функции
.
-
Ответ:
а)
0
б)
1
в)
– 1
г)
4. Найти
асимптоты графика функции
.
-
Ответ:
а)
,
б)
в)
,
г)
