- •Информатика
- •Глава 1 5
- •Глава 2 12
- •Глава 3 24
- •Глава 4 41
- •Глава 1
- •Системы счисления, используемые в информатике
- •Правила перевода чисел из одной системы счисления в другую
- •Задания для самостоятельного выполнения
- •Вопросы для самоконтроля
- •Глава 2 Арифметические операции
- •Сложение
- •Вычитание
- •Умножение
- •Деление
- •Задания для самостоятельного выполнения
- •Глава 3 Задачи на расчёт информационного объёма Информационный объём текстового сообщения
- •Количество информации как мера уменьшения неопределенности знаний. Подходы к определению количества информации. Алфавитный подход к измерению информации
- •Содержательный подход. Формулы Хартли и Шеннона.
- •Кодирование графической информации
- •Представление и измерение звуковой информации Кодирование звуковой информации
- •Задания для самостоятельного выполнения
- •Вопросы для самоконтроля
- •Глава 4 Алгоритмизация и программирование Понятие алгоритм, свойства алгоритма
- •Способы представления алгоритмов
- •Базовые алгоритмические структуры
- •Структура «следование»
- •Структура «развилка»
- •Структура «выбор»
- •Данная структура используется также в неполной форме. В этом случае она реализуется следующим образом.
- •Структура «цикл с предусловием»
- •Структура «цикл с постусловием»
- •Структура «цикл с параметром»
- •Этапы решения задач на компьютере
- •Задания для самостоятельного выполнения
- •Список рекомендуемой литературы:
- •Приложение Программа экзамена по информатике
- •Тема 1. Общие теоретические основы информатики
- •Тема 2. Технические средства реализации информационных процессов
- •Тема 3. Программные средства реализации информационных процессов
- •Тема 4. Модели решения функциональных и вычислительных задач
- •Тема 5. Алгоритмизация и программирование
- •Примерные тесты
- •Теоретические вопросы
- •Практические вопросы
Представление и измерение звуковой информации Кодирование звуковой информации
С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, микрофон и колонки, может записывать, сохранять и воспроизводить звуковую информацию.
Процесс преобразования звуковых волн в двоичный код в памяти компьютера:
Процесс воспроизведения звуковой информации, сохраненной в памяти компьютера:
Звук – звуковая волна с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон.
Непрерывный звуковой сигнал превращается в последовательность электрических импульсов (двоичных 0 и 1).
При преобразовании звука в цифровую дискретную форму производится временная дискретизация, при которой непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина амплитуды.
В
ременная
дискретизация звука
Каждой «ступеньке» присваивается значение уровня громкости звука, его код 1, 2, 3 и т.д.
Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала можно рассчитать по формуле:
N= 2I= 216=65536, где I – глубина звука (разрешение).
Двоичное кодирование звуковой информации
Преобразование непрерывной звуковой волны в последовательность звуковых импульсов различной амплитуды производится с помощью аналого-цифрового преобразователя размещенного на звуковой плате.
Современные 16-битные звуковые карты обеспечивают возможность кодирования 65536 различных уровней громкости или 16-битную глубину кодирования звука.
Частота дискретизации (D) – это количество измерений уровня входного сигнала в единицу времени за 1 секунду. Одно измерение в секунду соответствует частоте 1 Гц, а 1000 измерений в сек – 1 кГц. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.
Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц.
Глубина звука (глубина кодирования) - количество бит на кодировку звука.
Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.
Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).
Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 (стереозвук):
16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.
Преобразование звука в двоичный код выполняет специальное устройство.
Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.
Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.
Разрядность регистра – число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2I =N различных значений.
Размер цифрового моноаудио файла измеряется по формуле:
,
где D – частота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.
Размер цифрового стереоаудио файла измеряется по формуле:
,
сигнал записан для двух колонок, так
как раздельно кодируются левый и правый
каналы звучания.
Определить количество информации в звуке можно по формуле:
V = k * i ,
где V – количество информации в звуке;
k – количество временных интервалов;
i – глубина звука (т.е. количество бит - 16, 32 или 64, выделенных на кодирование уровня громкости на одном интервале), определяемая по формуле: 2i ≥ N, где N – количество уровней громкости.
Таким образом, любой звук может быть представлен последовательностью нулей и единиц. т.е. двоичным кодом. Качество звука тем выше, чем больше глубина звука и частота дискретизации (т.е. количество «ступеней» в секунду). Исходная формула может быть преобразована следующим образом:
V = t * ν * I ,
где V – количество информации в звуке;
t – время звучания,
ν – частота дискретизации,
i – глубина звука.
Пример 3.15
Оценить информационный объём стереоаудиофайла длительностью звучания 1 секунда при высоком качестве звука (16 бит, 48 кГц).
Решение:
Для этого количество бит, приходящихся на одну выборку (глубина звука), надо умножить на количество выборок в 1 секунду и умножить на 2 (стерео):
Решение
V=
T ×I × D
× 2
V=1
×16 × 48 000 × 2=
1536000
бит/8 =192000 байт/1024 = 187,5 Кбайт
Запись условия
T=1
сек
I=16
бит
D=
48 кГц
Стерео
- ×2
V=?
Стандартное приложение Звукозапись играет роль цифрового магнитофона и позволяет записывать звук, т.е. дискретизировать звуковые сигналы, и сохранять их в звуковых файлах в формате WAV.
