- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
Задание для самостоятельной работы
Докажите при помощи таблиц истинности справедливость следующих «классических» тождественно истинных формул логики высказываний:
Закон тождества: «Всякое высказывание является логическим следствием самого себя»
;Закон противоречия: «Для всякого высказывания неверно, что истинно и само высказывание и его отрицание»
;Закон исключенного третьего: «Для каждого высказывания истинно или само высказывание или его отрицание»
;Закон двойного отрицания: «Отрицание от отрицания равносильно самому высказыванию»
;Добавление антецедента: «Истина из чего угодно (verum ex quodlibet)»
;Ex falso quodlibet: «Из ложного что угодно»
2.3. Логические схемы
Логические схемы – это физические устройства, реализующие функции математической логики. Логические схемы являются основой любых систем обработки дискретной информации.
К основным логическим схемам относятся:
Схема «НЕ» - инвертор. Реализует операцию отрицания;
Схема «ИЛИ». Реализует дизъюнкцию двух и более логических значений;
Схема «И». Реализует конъюнкцию двух и более логических значений;
Схема «ИЛИ – НЕ». Состоит из элемента «ИЛИ» и инвертора;
Схема «И – НЕ». Состоит из элемента «И» и инвертора.
Условные обозначения логических схем:
Сигнал на выходе из логической схемы зависит от реализуемой операции и значений подаваемых на вход сигналов. Работа логических схем также описывается при помощи таблиц истинности. Как правило, в качестве подаваемых сигналов используется уровень напряжения, который для значения «0» составляет 0 Вольт, а для значения «1» - 5 Вольт.
Лекция 3. Логика предикатов. Логические операции над предикатами
Статья «Логика-predikatov.ru/logik/»
3.1. Понятие предиката
«Предикат» с английского переводится как сказуемое. Формально предикатом называется функция, аргументами которой могут быть произвольные объекты из некоторого множества, а значения функции «истина» или «ложь». Предикат можно рассматривать как расширение понятия высказывания.
Средства, предоставляемые логикой высказываний, оказываются недостаточными для анализа многих математических рассуждений. В алгебре логики не рассматриваются ни структура высказываний, ни, тем более, их содержание. В то же время и в науке, и в практике используются заключения, существенным образом зависящие как от структуры, так и от содержания используемых в них высказываний.
3.2. Логика предикатов
Логика предикатов, как и традиционная формальная логика, расчленяет элементарное высказывание на субъект (буквально – подлежащее, хотя оно может играть и роль дополнения) и предикат (буквально – сказуемое, хотя оно может играть и роль определения).
Субъект – это то, о чем что-то утверждается в высказывании, а предикат – это то, что утверждается о субъекте.
Логика предикатов – это расширение логики высказываний за счет использования предикатов в роли логических функций.
Например, в высказывании «7 – простое число», «7» – субъект, «простое число» – предикат. Это высказывание утверждает, что «7» обладает свойством «быть простым числом».
Если в рассмотренном примере заменить конкретное число 7 переменной х из множества натуральных чисел, то получим высказывательную форму «х – простое число». При одних значениях х (например, х = 13, х = 17) эта форма дает истинные высказывания, а при других значениях х (например, х = 10, х = 18) эта форма дает ложные высказывания.
Определение 1. Одноместным предикатом Р(х) называется всякая функция одного переменного, в которой аргумент x пробегает значения из некоторого множества M, а функция при этом принимает одно из двух значений: истина или ложь.
Множество M, на котором задан предикат, называется областью определения предиката.
Множество
,
на котором предикат принимает только
истинные значения,
называется областью
истинности
предиката
Р(х).
Например, предикат P(x) - « x- простое число» определен на множестве натуральных чисел, а множество IP – это множество всех простых чисел.
О
пределение
2. Предикат
Р(х),
определённый на множестве M,
называется тождественно
истинным
(тождественно
ложным), если
Определение 3. Двухместным предикатом P(x, у) называется функция двух переменных х и у, определённая на множестве М=М1×М2 и принимающая значения из множества {1,0}.
В качестве примеров двухместных предикатов можно назвать предикаты: Q(x, у) – «х = у» предикат равенства, определённый на множестве R2=R×R; F(x, у) – «х || у» прямая х параллельна прямой у, определённый на множестве прямых, лежащих на данной плоскости.
Говорят, что
предикат Р(х)
является следствием
предиката Q(х)
,
если
;
и предикаты Р(х)
и Q
(х)
равносильны
,
если
.
Пример 1. Среди следующих предложений выделить предикаты и для каждого из них указать область истинности:
х + 5 = 1
при х = 2 выполняется равенство х2 – 1 = 0
х2 – 2х + 1 = 0
существует такое число х, что х3 – 2х + 1 = 0
х + 2 < Зх – 4
однозначное неотрицательное число х кратно 3
(х + 2) – (3х – 4)
Решение. 1) Предложение является одноместным предикатом Р(х), IP = {– 4}; 2) предложение не является предикатом. Это ложное высказывание; 3) предложение является одноместным предикатом Р(х), IP = {1}; 4) предложение не является предикатом. Это истинное высказывание; 5) предложение является одноместным предикатом Р(х), IP = (3; +∞); 6) предложение является одноместным предикатом Р(х), IP = {0; 3; 6; 9}; 7) предложение не является предикатом;
П
ример
2. Изобразить
на декартовой плоскости область
истинности предиката
.
Решение.
Неравенство,
составляющее исходный предикат,
ограничивает часть плоскости, заключенную
между ветвями параболы
,
она изображена серой частью рисунка:
