- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
2.1. Логические формулы
С помощью логических переменных и символов логических операций любое высказывание можно формализовать, т.е. заменить его логической формулой.
A |
B |
|
C |
|
0 |
0 |
0 |
|
|
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
|
|
1 |
1 |
1 |
Анализ формулы показывает, что она принимает и значения «1» (истинна) и значения «0» (ложна).
Такие формулы называются выполнимыми.
Формулы, которые
принимают значение «1» при любых значениях
истинности переменных называются
тождественно
истинными или тавтологиями.
Например
.
Формулы, которые
принимают значение «0» при любых значениях
истинности переменных называются
тождественно
ложными или противоречиями.
Например
.
Задание. Определить вид логической формулы:
1)
.
Упростим формулу, учитывая, что
последовательность выполнения операций
такая же, как в алгебре, и сначала
выполняются действия в скобках.
,
т.к. последняя операция – это дизъюнкция
«1 или …»; в любом случае получим «1».
Тогда, вывод:
тождественно
истинная формула.
a |
b |
|
|
|
|
|
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
Вывод: тождественно ложная формула
3) Самостоятельно:
2.2. Логические функции
Всякую формулу
логики высказываний можно рассматривать
как представление некоторой функции.
Например, формула
выражает функцию от переменных a,
b,
c.
По аналогии с функцией элементарной
алгебры
.
Разница в том, что, если в элементарной алгебре рассматриваются числовые функции (т.е. и переменные и функция принимают числовые значения), то в логике высказываний рассматриваются так называемые логические (булевы) функции, в которых как каждая переменная, так и сама функция принимают только одно из двух значений: «1», т.е. истинно или «0», т.е. ложно. Переменные, принимающие только значения «И» или «Л» называют булевыми переменными.
При этом логические операции (отрицание, конъюнкция, дизъюнкция, импликация, эквиваленция) аналогичны алгебраическим операциям сложения, вычитания, умножения, возведения в степень и т.д.
Для действий с
логическими переменными введение пяти
операций избыточно, т.к. некоторые из
них равносильно (
)
выражаются через другие. В действительности
достаточно логических операций отрицания,
сложения и умножения. Формулы, содержащие
только знаки этих операций – булевы
формулы, на
которых основана алгебра
Буля.
Основные законы булевой алгебры:
Коммутативные:
;Ассоциативные:
;Законы идемпотентности:
;Дистрибутивные законы:
;Законы де Моргана:
;Закон двойного отрицания:
.
