- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
Раздел 6. Основы дискретной математики
Лекция 1. Введение. Алгебра логики. Логические операции и логические функции
1.1. Введение. Предмет дискретной математики
«Всю математику можно поделить на две большие части: континуальную и дискретную математику. К континуальной математике относится все, что содержит идеи теории пределов и непрерывности. Дискретная математика – область математике, изучающая дискретные математические объекты и структуры.
Непрерывность и однородность пространства – это предпосылки возникновения континуальных разделов математики; разрывность и неоднородность – дискретных разделов. При этом деление математики на континуальную и дискретную весьма условно, ибо единство мира, тесная связь его непрерывных и дискретных свойств являются основанием единства математики.
Примеры дискретных математических объектов:
Натуральный ряд чисел;
Конечное множество элементов произвольной природы;
Функция (как отображение) из конечного множества в конечное множество;
Слово как последовательность символов;
Формальный язык (множество слов) в конечном алфавите и другие.
Дискретные системы с древнейших времен применяются в вычислительной практике. Широко известны изобретенные в древности различные системы представления чисел и связанные с ними алгоритмы выполнения арифметических операций, решения уравнений и т.п. Также повсеместно распространены изобретенные дискретные вычислительные приспособления.
В широком смысле дискретная математика включает в себя давно сложившиеся разделы:
Теория чисел;
Алгебра;
Теория множеств;
Математическая логика.
В узком (профессиональном) смысле дискретная математика состоит из ряда специальных разделов и сравнительно новых разделов, которые стали интенсивно развиваться в связи с изобретением и постепенным внедрением во все сферы жизни ЭВМ и цифровых технологий. К последним относятся:
Теория графов и сетей;
Теория алгоритмов;
Комбинаторный анализ;
Теория кодирования;
Теория функциональных систем и другие.
Большое значение для осознания роли дискретной математики в науке XX века имело возникновение и распространение в современном естествознании таких разделов физики как «Атомно-молекулярная теория», «Квантовая и статистическая физика».
Бурное развитие дискретной математики во второй половине XX-го века связывают с «цифровой революцией» в телекоммуникационной и вычислительной технике.
В XXI веке роль и место дискретной математики определяются тремя основными факторами:
Дискретную математику можно рассматривать как теоретическую основу компьютерной математики;
Модели и методы дискретной математики являются хорошим средством и языком для построения и анализа моделей в различных науках, включая химию, биологию, генетику, физику, психологию, социологию, экологию и др.;
Язык дискретной математики чрезвычайно удобен и стал фактически метаязыком всей современной математики.
1.2. Алгебра логики
Создателем алгебры логики (или математической логики) считается английский математик XIX века Джордж Буль, поэтому этот раздел математики носит название булева алгебра.
Алгебра логики – это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.
Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.
Например: высказывание « 12 – четное число» - истинно, а высказывание «12 не делится на 2» - ложно.
Логика высказываний лежит в основе всех других разделов математической логики и необходима для их понимания. Разумеется, не всякое предложение является логическим высказыванием. Например, такие фразы: «Сегодня хорошая погода», «Автобус часто опаздывает» и т.п. – это просто высказывательная форма.
Алгебра логики рассматривает любое высказывание только с одной точки зрения: истинно оно или ложно. При этом не учитываются такие понятия как новизна, интересность и т.п.
Из заданных элементарных логических высказываний при помощи логических связок можно строить новые высказывания. Логические связки создаются при помощи слов и сочетаний: «НЕ», «И», «ИЛИ», «ЕСЛИ …, ТО…», «ТОГДА И ТОЛЬКО ТОГДА». Высказывания, образованные при помощи логических связок называются составные.
Для упрощения записи логические высказывания обозначают буквами латинского алфавита: A, B, a, b… и т.д.
Истинному высказыванию присваивается значение «1», ложному – «0».
