- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
В озведение в степень:
Правила
2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
Посчитаем степени числа :
Вычислить:
2.1)
;
2.2)
;
2.3)
;
2.4)
;
2.5)
;
Найти решение уравнения:
Решение:
Вычислить:
4.1)
4.2)
4.3)
4.4)
4.5)
5) Вычислить:
а) число
,
если
;
б) число
Решение:
а)
б)
Лекция 3. Тригонометрическая форма комплексного числа
3.1. Полярные координаты
На плоскости часто
применяется полярная
система координат.
Она определена, если задана точка O,
называемая полюсом,
и исходящий из полюса луч (для нас это
ось Ox)
– полярная ось.
Положение точки M
фиксируется двумя числами: радиусом
(или радиус-вектором)
и
углом φ между полярной осью и вектором
.
Угол φ
называется полярным
углом; измеряется в радианах и отсчитывается
от полярной оси против часовой стрелки.
Положение точки
в полярной системе координат задается
упорядоченной парой чисел (r;
φ). У полюса
r
= 0, а φ не
определено. Для всех остальных точек
r
> 0, а φ
определено с точностью до слагаемого
кратного 2π. При этом парам чисел (r;
φ)
и (r1;
φ1)
сопоставляется одна и та же точка, если
.
Для прямоугольной
системы координат xOy
декартовы координаты точки легко
выражаются через ее полярные координаты
следующим образом:
3.2. Геометрическая интерпретация комплексного числа
Рассмотрим на
плоскости декартову прямоугольную
систему координат xOy.
Любому комплексному числу z=(a, b) ставится в соответствие точка плоскости с координатами (x, y), где координата x = a, т.е. действительной части комплексного числа, а координата y = bi – мнимой части.
Плоскость, точками которой являются комплексные числа – комплексная плоскость.
На рисунке комплексному числу z = (a, b) соответствует точка M(x, y).
Задание. Изобразите на координатной плоскости комплексные числа:
3.3. Тригонометрическая форма комплексного числа
Комплексное число
на плоскости имеет координаты точки M
(x;
y).
При этом:
Тогда:
.
Запись комплексного
числа
- тригонометрическая
форма комплексного числа.
Число r
называется модулем
комплексного
числа z
и обозначается
.
Модуль – неотрицательное вещественное
число. Для
.
Модуль равен нулю тогда и только тогда, когда z = 0, т.е. a = b = 0.
Число φ называется
аргументом
z
и
обозначается
.
Аргумент z
определен неоднозначно, как и полярный
угол в полярной системе координат, а
именно с точностью до слагаемого кратного
2π.
Тогда принимаем:
,
где φ – наименьшее значение аргумента.
Очевидно, что
.
При более глубоком
изучении темы вводится вспомогательный
аргумент φ*, такой, что
Пример 1.
Найти тригонометрическую форму
комплексного числа
.
Решение. 1) считаем
модуль:
;
2) ищем φ:
;
3) тригонометрическая
форма:
Пример 2. Найти
алгебраическую форму комплексного
числа
.
Здесь достаточно подставить значения тригонометрических функций и преобразовать выражение:
П
ример
3. Найти
модуль и аргумент комплексного числа
;
1)
;
2)
;
φ – в 4 четверти:
