- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
2.2. Статистический интервальный ряд распределения. Гистограмма
Статистическим дискретным рядом (или эмпирической функцией распределения) обычно пользуются в том случае, когда отличных друг от друга вариант в выборке не слишком много, или тогда, когда дискретность по тем или иным причинам существенна для исследователя. Если же интересующий нас признак генеральной совокупности Х распределен непрерывно или его дискретность нецелесообразно (или невозможно) учитывать, то варианты группируются в интервалы.
Часто разбиение на интервалы и группировку осуществляют с равным шагом разбиения. При этом можно пользоваться следующими рекомендациями по выборке:
- размах выборки;
- шаг разбиения
(ширина
интервала),
где k
– число интервалов;
- формула
Старджеса
для определения числа интервалов, n
– объем выборки;
;
Полученную группировку удобно представить в форме частотной таблицы, которая носит название статистический интервальный ряд распределения:
Интервалы группировки |
[h0;h1) |
[h1;h2) |
... |
[hk-2;hk-1) |
[hk-1;hk) |
Частоты |
n1 |
n2 |
... |
nk-1 |
nk |
Аналогическую таблицу можно образовать, заменяя частоты ni относительными частотами:
Интервалы группировки |
[h0;h1) |
[h1;h2) |
... |
[hk-2;hk-1) |
[hk-1;hk) |
Относительные частоты |
w1 |
w2 |
... |
wk-1 |
wk |
Наиболее информативной графической формой частот является специальный график, называемый гистограммой частот.
Гистограмма частот - ступенчатая фигура, состоящая из прямоугольников, основаниями которых
служат частичные
интервалы длиною h, а высоты равны
отношению
(плотность
частоты).
Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии .
Площадь i-го
частичного прямоугольника равна
- сумме частот вариант i-го интервала;
следовательно,
площадь гистограммы частот равна сумме
всех частот, т.е. объему выборки.
Гистограммой
относительных частот
называют
ступенчатую фигуру, состоящую из
прямоугольников, основаниями которых
служат частичные интервалы длиною h, а
высоты равны отношению
(плотность
относительной частоты).
Для построения
гистограммы относительных частот на
оси абсцисс откладывают частичные
интервалы, а над ними проводят отрезки,
параллельные оси абсцисс на расстоянии
.
Площадь i-го частичного прямоугольника
равна
- относительной частоте вариант, попавших
в i-й интервал. Следовательно, площадь
гистограммы относительных частот равна
сумме всех относительных частот, т.е.
единице.
Выборочная медиана – это середина вариационного ряда, значение, расположенное на одинаковом расстоянии от левой и правой границы выборки.
Выборочная мода – это наиболее вероятное, т.е. чаще всего встречающееся, значение в выборке.
Пример 3. Из очень большой партии деталей извлечена случайная выборка объема 50; интересующий нас признак Х - размеры деталей, измеренные с точностью до 1см, представлен следующим вариационным рядом: 12, 14, 13, 15, 18, 20, 21, 22, 22, 11, 13, 14, 17, 19, 16, 17, 15, 20, 19, 21, 20, 15, 17, 14, 18, 12, 12, 15, 18, 18, 21, 22, 21, 20, 21, 15, 19, 19, 19, 18, 21, 14, 15, 17, 16, 14, 13, 13, 12, 11. Найти статистический интервальный ряд распределения, построить гистограмму частот и относительных частот.
Решение.
1)
,
т.е. k = 7;
Интервалы группировки |
11-12,6 |
12,6-14,2 |
14,2-15,8 |
15,8-17,4 |
17,4-19 |
19-20,6 |
20,6-22 |
Частоты ni |
6 |
9 |
6 |
6 |
6 |
8 |
9 |
Относительные частоты wi |
0,12 |
0,18 |
0,12 |
0,12 |
0,12 |
0,16 |
0,18 |
2)
3) Гистограммы частот и относительных частот:
Лекция 3. Случайные величины и законы распределения. Числовые характеристики случайной величины
