- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
1) Сколькими способами можно в группе из 21 студентов выбрать старосту, заместителя старосты и физорга?
2) Порядок выступлений 9 участников конкурса определяется жеребьевкой. Сколько вариантов жеребьевки при этом возможно?
3) В семье двое детей. Найдите вероятность, что старший ребенок – мальчик.
4) В урне 4 белых и 6 черных шаров. Из урны по очереди извлекаются 2 шара. Найти вероятность того, что вынутые шары одного цвета.
5) Игральную кость бросают два раза. Найдите вероятность того, что в сумме выпало не менее 10 очков.
6) Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
7) Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.
Ответы: 1) 7980; 2) 362880; 3) 0,5; 4) 0,52; 5) 0,1(6); 6) 0,053; 7) 0,9477
Тема 5.1. Элементы математической статистики
Лекция 1. Основные задачи и основные понятия математической статистики
1.1. Основные задачи
«Математическая статистика – это часть прикладной математической дисциплины «Теория вероятностей и математическая статистика», которая изучает случайные явления, использует одинаковые с теорией вероятностей методы и понятия и основана на аксиоматике А.Н.Колмогорова…»
Первая задача математической статистики - определение способов сбора и группировки статистической информации.
Вторая задача - разработка методов анализа статистических данных, адекватных целям исследования.
1.2. Основные понятия
Количество всех,
подлежащих обследованию объектов –
,
где i
меняется от 1 до N.
Допустим, что каждому объекту
i
соответствует значение xi.
Тогда:
Совокупность всех возможных значений N называется генеральной совокупностью;
N – объем генеральной совокупности;
Если количество реально наблюдаемых объектов из N равно n, значения
- выборка
их генеральной совокупности, n
– объем выборки.
Выборка из генеральной совокупности должна обладать следующими свойствами:
каждый элемент xi выбран случайно;
все xi имеют одинаковую вероятность попасть в выборку;
выборка должна быть репрезентативной (представительной), т.е. значение n должно быть настолько велико, насколько это позволяет решить задачу с требуемым качеством.
Принято считать, что при n > 60 выборка большая (репрезентативная), а при N < 60 – малая. Однако, это деление условно. Возможны ситуации, когда выборка может считаться одновременно и репрезентативной и малой. (Например, при исследовании уникального дорогостоящего оборудования).
Пример 1. Количество зарегистрированных малых предприятий торговли продуктами питания в городе Санкт-Петербурге равно 7438. Для исследования предприятий по объему товарооборота взято 254 предприятия. В данном случае N = 7438 – объем генеральной совокупности, n = 254 – объем выборки из генеральной совокупности.
Пример 2. Исследование ежедневного простоя на некоторой стройке из-за отсутствия строительных материалов в течение 10 дней представлено в виде: 1,3 0,7 2,8 2,3 1,4 0,25 0,8 2,4 0,45 1,15 часов.
