- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
Задание для самостоятельной работы
Вычислить объемы тел, полученных вращением фигур, ограниченных линиями:
вокруг
Ox;
вокруг
Oy;
вокруг
Ox;
вокруг
Oy;
вокруг
Ox;
Ответы:
(ед3)
Лекция 5. Дифференциальное и интегральное исчисление в прикладных задачах
5.1. Физические задачи
Если
,
тогда, если задана формула изменения
скорости (ускорения), путь, пройденный
телом (скорость) за время
:
.
Задача 1.
Тело ускоренно движется по закону
.
Найти:
Начальную скорость движения;
Среднюю скорость за время от 2 с до 4 с;
Путь, пройденный телом от начала движения до полной остановки, и ускорение в этот момент.
Решение.
1)
2)
;
3) Тело остановилось – значит, скорость в этот момент времени равна нулю:
Ответ: 1) 6 м/с, 2) 11 м/с, 3) 57 м, -7 м/с2 (отрицательное ускорение подсказывает, что движение было ускоренно-замедленным).
Задача 2. Скорость
тела, движущегося прямолинейно, изменяется
по закону:
[м/с]. Найти путь, пройденный телом за
время от 3-й до 5-й секунды.
Решение:
Ответ: 94 м.
5.2. Производная и интеграл в экономике
«В экономических исследованиях используется специфическая терминология. Например, если f(x) есть производственная функция, выражающая зависимость выпуска какой-либо продукции от затрат фактора x, то f '(x) называют предельным продуктом; если g(x) есть функция издержек, т. е. функция g(x) выражает зависимость общих затрат от объема продукции x, то g'(x) называют предельными издержками.
Большей частью плановые расчеты основываются на статистических данных и ведутся в форме суммарных показателей. Однако в некоторых случаях оказывается необходимым более детальное исследование с учетом предельных значений (предельный анализ).
Например, при выяснении издержек производства зерна в районе на перспективу принимают во внимание, что издержки могут быть различными в зависимости, при прочих равных условиях, от предполагаемых объемов сбора зерна, так как на вновь вовлекаемых в обработку худших землях издержки производства будут выше, чем по району в среднем.
Если зависимость
между двумя показателями v
и x
задана
аналитически v
= f(x),
то средняя величина – это
отношение v/x,
а предельная – производная
.
Нахождение производительности труда( z). Пусть функция u = u(t) выражает зависимость количества произведенной продукции u за время работы t . Тогда за время dt = Δt = t1 – t0 количество продукции -
.
Средняя
производительность
,
производительность труда в момент
времени t0
– предел
этого отношения, т.е.
.
Издержки производства есть функция количества продукции:
,
где x
– количество продукции. Тогда
- предельные
издержки производства.Если обозначить через u(x) выручку от продажи x единиц товара, то
и
называется
предельной выручкой.Эластичность функции. Для заданной функции
Эластичность относительно x есть приближенный процентный прирост функции (повышение или понижение), соответствующий приращению независимой переменной на 1%. Экономисты измеряют степень чуткости, или чувствительности, потребителей к изменению цены продукции, используя концепцию ценовой эластичности. Для спроса на некоторые продукты характерна относительная чуткость потребителей к изменениям цен, небольшие изменения в цене приводят к значительным изменениям в количестве покупаемой продукции. Спрос на такие продукты принято называть относительно эластичным или просто эластичным. Что касается других продуктов, потребители относительно нечутки к изменению цен на них, то есть существенное изменение в цене ведет лишь к небольшому изменению в количестве покупок. В таких случаях спрос относительно неэластичен или просто неэластичен. Термин совершенно неэластичный спрос означает крайний случай, когда изменение цены не приводит ни к какому изменению количества спрашиваемой продукции. Примером может служить спрос больных острой формой диабета на инсулин или спрос наркоманов на героин. И наоборот, когда при самом малом снижении цены покупатели увеличивают покупки до предела своих возможностей - тогда мы говорим, что спрос является совершенно эластичным.
Очевидно, что при задании желаемых результатов (т.е. предельных значений), поиск зависимостей приводит к интегральному исчислению».
