- •Конспекты лекций по математике с примерами решения задач и заданиями для самостоятельной работы для студентов заочной формы обучения
- •15.02.12 «Монтаж, техническое обслуживание и ремонт промышленного оборудования (по отраслям)»
- •Раздел 1. Комплексные числа
- •1.1. Понятие комплексного числа
- •1.2. Операции над комплексными числами
- •1.3. Число « I » - мнимая единица
- •1.4. Алгебраическая форма комплексного числа
- •2.1. Действия
- •В озведение в степень:
- •2.2. Практическая работа № 1 «Действия с комплексными числами в алгебраической форме»
- •3.1. Полярные координаты
- •3.2. Геометрическая интерпретация комплексного числа
- •3.3. Тригонометрическая форма комплексного числа
- •3.4. Действия с комплексными числами в тригонометрической форме
- •Заключение
- •Домашнее задание № 1 «Действия с комплексными числами»
- •Раздел 2. Элементы линейной алгебры
- •Тема 2.1. Матрицы и определители
- •1.1. Понятие матрицы
- •1.2. Виды матриц
- •1.3. Операции над матрицами
- •Свойства матриц одинакового размера
- •1.4. Решение примеров
- •2.1. Определители 2-го и 3-го порядков
- •2.2. Свойства определителей
- •2.3. Ранг матрицы
- •3.1. Обратная матрица
- •3.2. Практическая работа № 2 «Матрицы и определители»
- •Домашнее задание № 2 «Матрицы и определители»
- •Тема 2.2. Системы линейных алгебраических уравнений
- •1.2. Метод Крамера
- •1.3. Практическая работа № 3 «Решение слу методом Крамера»
- •2.1. Матричный метод решения слу
- •2.2. Метод Гаусса
- •Домашнее задание № 3 «Системы линейных уравнений»
- •Раздел 3. Введение в математический анализ
- •Тема 3.1. Функция одной переменной
- •1.1. Функция
- •1.2. Способы задания функции
- •1.4. Виды функций
- •1.4.1. Числовая последовательность
- •1.4.2. Основные элементарные функции
- •1.4.3. Сложная функция
- •1.4.4. Обратная функция
- •2.1. Степенная функция
- •Вид графика:
- •2.3. Показательная и логарифмическая функции
- •2.4. Тригонометрические функции
- •Домашнее задание № 4 «Функции и их свойства»
- •Тема 3.2. Пределы и непрерывность
- •1.1. Числовая последовательность
- •1.2. Свойства последовательностей.
- •1.3. Предел последовательности
- •Правила вычисления пределов:
- •1.4. Бесконечно малые и бесконечно большие функции
- •1.5. Практическая работа № 4 «Числовые последовательности»
- •2.1 Предел функции в точке
- •2.2. Односторонние пределы
- •2.3. Непрерывность функции в точке
- •2.4. Виды разрывов
- •2.5. Свойства непрерывных функций
- •2.6. Асимптоты графика функции
- •2. Горизонтальные и наклонные
- •3.1. Основные теоремы о пределах
- •3.2. Практическая работа № 5 «Вычисление пределов»
- •Домашнее задание № 5 «Вычисление пределов»
- •Часть 1.
- •Часть 2.
- •4.1. Эквивалентные б.М.Ф. И б.Б.Ф.
- •4.2. Замечательные пределы
- •Задание для самостоятельной работы
- •4.3. Замечательные пределы в экономике
- •Раздел 4. Дифференциальное и интегральное исчисление
- •Тема 4.1. Производная и ее приложения
- •1.2. Техника дифференцирования
- •Домашнее задание № 6 «Дифференцирование функций»
- •Часть 1. Найдите производные функций
- •Часть 2. Найдите значение производной функции:
- •2.2. Физический смысл первой и второй производной
- •2.3. Геометрический смысл первой и второй производной
- •2.4. Задачи
- •Задание для самостоятельной работы
- •3.1. Схема исследования функции
- •3.2. Практическая работа № 6 «Исследование функции при помощи производной»
- •Домашнее задание № 7 «Исследование функций при помощи производной»
- •Тема 4.2. Дифференциал
- •1.1. Дифференциал
- •1.2. Дифференциал сложной функции
- •Задание для самостоятельной работы
- •1.4. Геометрический смысл дифференциала
- •Домашнее задание № 8 «Применение дифференциала к приближенным вычислениям»
- •Тема 4.3. Неопределенный интеграл
- •1.1. Первообразная
- •1.2. Неопределенный интеграл
- •1.3. Основные свойства неопределенного интеграла
- •Домашнее задание № 9 «Непосредственное интегрирование»
- •3.1. Интегрирование методом замены переменной (метод подстановки)
- •3.2. Практическая работа № 8 «Методы интегрирования»
- •Домашнее задание № 10 «Интегрирование методом подстановки»
- •4.1. Вывод формулы
- •4.2. Типовые задачи
- •4.3. Решение примеров
- •Домашнее задание № 11 «Интегрирование по частям»
- •Тема 4.4. Определенный интеграл
- •1.1. Определенный интеграл как предел интегральных сумм
- •1.2. Геометрический смысл определенного интеграла
- •1.3. Свойства определенного интеграла
- •2.1. Формула Ньютона – Лейбница
- •2.2. Практическая работа № 9 «Вычисление определенного интеграла»
- •Домашнее задание № 12 «Вычисление определенного интеграла»
- •3.1. Вычисление площадей
- •3.2. Практическая работа № 10 «Вычисление площадей плоских фигур»
- •Задание для самостоятельной работы
- •Часть 2.
- •Задание для самостоятельной работы
- •5.1. Физические задачи
- •5.2. Производная и интеграл в экономике
- •Раздел 5. Основы теории вероятностей и математической статистики
- •Тема 5.1. Основные понятия комбинаторики и теории вероятностей
- •1.1. Основные понятия комбинаторики
- •1.2. Событие
- •2.1. Сложение и умножение вероятностей
- •2.2. Практическая работа №11 «Решение задач на вычисление вероятности случайных событий»
- •2.3. Схема независимых испытаний (схема Бернулли)
- •Домашнее задание № 13 «Решение простейших задач по комбинаторике и теории вероятностей»
- •Тема 5.1. Элементы математической статистики
- •1.1. Основные задачи
- •1.2. Основные понятия
- •1.3. Формы представления выборки из генеральной совокупности:
- •2.1. Статистическое дискретное распределение. Полигон
- •2.2. Статистический интервальный ряд распределения. Гистограмма
- •3.1. Случайные величины и законы распределения
- •3.2. Числовые характеристики случайной величины
- •3.3. Практическая работа № 12 «Нахождение числовых характеристик случайной величины»
- •Домашнее задание № 14 «Элементы математической статистики»
- •Раздел 6. Основы дискретной математики
- •1.1. Введение. Предмет дискретной математики
- •1.2. Алгебра логики
- •1.3. Логические операции
- •2.1. Логические формулы
- •2.2. Логические функции
- •Задание для самостоятельной работы
- •2.3. Логические схемы
- •3.1. Понятие предиката
- •3.2. Логика предикатов
- •3.3. Логические операции над предикатами
- •Цепочка эквивалентных бесконечно малых
- •Замечательные пределы
Домашнее задание № 7 «Исследование функций при помощи производной»
Исследуйте функции и постройте их графики:
1)
;
2)
;
3)
4)
5)
Тема 4.2. Дифференциал
Лекция 1. Дифференциал. Определение и геометрический смысл
1.1. Дифференциал
Пусть функция
f(x)
дифференцируема в точке x0
(a,
b),
т.е. существует
.
Тогда по теореме о представлении функции в виде суммы ее предела и б.м.ф. (см. раздел 3, тема 3.2.) «Предел функции в точке»: если , то f(x) = A + α(x)) имеем:
Здесь слагаемые
α(x)
и Δx
есть бесконечно малые более высокого
порядка, чем величина
.
Тогда величина
составляет главную часть приращения
функции в точке x0.
Это и есть дифференциал.
Определение. Дифференциалом функции y=f(x) в точке x0 называется линейная относительно Δx величина , составляющая главную часть приращения функции в точке x0.
Обозначение:
Если функция
дифференцируема в каждой точке интервала
(a,
b),
то
или
Для функции
.
Тогда запись: d f(x) = f / (x) dx или d y = y / dx
Т.е. дифференциал функции равен произведению производной на дифференциал аргумента.
При этом, если f
/ (x0)
= 0, то d
f(x0)
= 0. Здесь f
/ (x0)
Δx
не главная часть приращения функции,
т.к.
.
Примеры. Найти дифференциалы следующих функций:
1)
2)
1.2. Дифференциал сложной функции
Если y
= f(u),
u
= g(x):
Таким образом, форма дифференциала не зависит от того, является ли аргумент независимой переменной или функцией другого аргумента. Это свойство называется инвариантность дифференциала.
Пример:
1.3. Основные свойства дифференциала: u и v -дифференцируемые функции
Задание для самостоятельной работы
Найти дифференциалы функций для допустимых значений аргумента:
1.4. Геометрический смысл дифференциала
Рассмотрим функцию y=f(x), дифференцируемую в точке x0.
Точка x0 → x0+Δx, M0 → M
M0T – касательная. Т – точка касательной, соответствующая приращенному аргументу.
Δx – приращение аргумента, Δy – приращение функции.
Тогда из ΔM0NT, <M0= α:
Д
ифференциал
функции
в точке x0
равен приращению
ординаты касательной,
которое соответствует приращению
аргумента на Δx.
Дифференциал может быть меньше (рис.1) и больше приращения функции (рис.2)
При достаточно малых приращениях аргумента (Δx) можно допустить, что dy ≈ Δy (d f(x0) ≈ Δf(x0)).
Приняв подобное допущение, рассматриваем практическое приложение дифференциала.
Лекция 2. Применение дифференциала к приближенным вычислениям
На практике
вычислить дифференциал проще, чем
приращение функции. Поэтому, если нужно
найти приращение функции в точке вместо
величины
применяют приближенное значение
Практическая работа № 7 «Приближенные вычисления»
Задание 1. Найти приближенное значение приращения функции в точке x0 при заданном приращении аргумента:
1.1)
Решение:
=
1.2)
=
Задание 2.
Найти приближенное значение функции в
точке. Здесь заданное значение аргумента
разбиваем на две части: x0
и Δx.
Тогда:
,
где величину
ищем как в задании 1.
Дано:
?
Решение. 1.
;
2. Считаем нужные
величины:
;
=
;
Тогда:
Задание 3.
Вычислить
приближенно
Решение: пусть
║
=
Тогда:
