Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamenats_bilety_lech_fak (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.47 Mб
Скачать
    1. Физиология старения. Старение как биологический процесс. Теории старения.

Согласно принятой ВОЗ классификации к пожилому возрасту относят мужчин от 60 до 74 лет и женщин от 55 до 74 лет, к старческому возрасту и долгожителям относят мужчин женщин соответственно в возрасте 75—89 лет и в возрасте 90 лет и старше. Мно¬гочисленные аспекты биологии старения рассматриваются геронтологией. Одним из ее раз¬делов является физиология старения.

Продолжительность жизни. Различают максимальную продолжительность жизни и сред¬нюю продолжительность предстоящей жизни. Под последней понимают число лет, которое предстоит прожить данному поколению при условии, что смертность населения в последую¬щем будет на уровне настоящего времени. Как отмечают Д.Ф. Чеботарев и соавт. (1990), в Древнем Риме ориентировочно продолжительность жизни составляла 28—30 лет, 40-лет¬ние считались стариками, а 60-летние — депонтинусами, пригодными лишь для жертво¬приношении. В США, согласно данным К.Банера и Л. Шейнберга (1997), продолжительность жизни в 1776 году составляла 35 лет, а в настоящее время — 75 лет. В странах, где уже давно уделяется большое внимание решению экологических проблем и придается большое значение здоровому образу жизни (например, в Японии), сегодня средняя продолжительность жизни уже превышает 80 лет. В России пока она не более 65—70 лет. Возраст, в котором умирают долгожители, практически не изменяется: сейчас, как и сотни лет назад, он состав¬ляет 110—120 лет. Продолжительность жизни определяется, прежде всего, процессом ста¬рения, а также факторами, влияющими на него! Старение — это разрушительный процесс, которому противостоит витаукт, т.е. возникший в эволюции механизм защиты организма от повреждения. Оба этих процесса идут на протяжении всей жизни человека; взаимоотноше¬ние между ними разделяет все индивидуальное развитие на три периода — прогрессивный, стабильный и дезадаптационный. Старость представляет собой заключительный период воз¬растного развития.

Старение. Различают естественное старение, преждевременное или ускоренное старе¬ние (прогерия) и ретардированное (замедленное) старение; последнее характерно для дол¬гожителей. Закономерные возрастные изменения организма, приводящие к старению, полу¬чили название гомеорез. Для него характерны гетерохронность, т.е. различие во времени наступления старения отдельных органов и тканей, а также гетеротопность, т.е. разная ско¬рость старения в различных отделах одного и того же органа.

Теории старения. В геронтологии существует более 100 теорий и гипотез о причинах и механизмах старения. С одной стороны, их можно разделить на две большие группы: пер¬вая группа теорий исходит из того, что старение — это генетически запрограммированный процесс; согласно второй группе представлений старение является результатом случайных процессов, разрушающих организм. Л.З. Тель (1997) среди всех теорий выделяет молеку¬лярные (генетические, метаболические, конформационные), клеточные, организменные и надорганиэменные.

Одна из самых популярных групп теорий обосновывает представление о генетической основе старения. Ряд сторонников этих теорий предполагает существование ювенильных генов, благодаря которым развертывается программа раннего онтогенеза, а также генов старе¬ния, экспрессия которых вызывает старение. Другие авторы полагают, что существует плейотропный механизм в действии генов: одни и те же гены на ранних этапах онтогенеза функци¬онируют благоприятно для развития, в то время как на поздних этапах их функция транс¬формируется в неблагоприятную. Недавно генетиками было показано, что при старении часть молекулы ДНК, свободная от генов, постепенно уменьшается; не исключено, что такая ре¬дукция молекулы ДНК каким-то образом имеет прямое отношение к старению организма и его гибели. Другие сторонники генной теории, отвергая представление о существовании спе¬циализированных генов, утверждают, что старение является следствием появления в геноме нарушений. По их мнению, в процессе онтогенеза в геномном аппарате клеток под влиянием самых разнообразных воздействий возникают различного рода дефекты, часть из которых не репарируется и приводит к нарушению синтеза белковых молекул (теория соматической му¬тации, генетическая мутационная теория, теория повреждения генетического аппарата сво¬бодными радикалами, теория накопления ошибок). Наиболее признанной из них является генорегуляторная теория В.В. Фролькиса (1988), которая большое внимание уделяет дефек¬там, возникающим на этапах транскрипции н трансляции синтеза белка, а также процессу сплайсинга, благодаря которому остающиеся в ядре фрагменты РНК оказывают регулирую¬щее влияние на транскрипцию. Показано, что вещества, тормозящие процесс транскрипции, увеличивают продолжительность жизни. Многие авторы основную причину старения видят в том, что с возрастом нарушается механизм репарации ДНК.

Согласно метаболическим теориям старение обусловлено действием на организм опре¬деленного вещества или группы веществ, либо оно является результатом «изнашивания» тканей и следствием снижения интенсивности и скорости метаболических процессов в организме. Еще в 1908 году И.И. Мечников выдвинул один из вариантов теории аутоинтоксикции и борьбы тканей в организме. Он объяснял старение как результат хронического отравления ядами, вырабатываемыми в толстом кишечнике. Кроме того, И.И. Мечников обосновал концепцию о «борьбе тканей», гетерохронности старения и роли макрофагов в этом процессе. Известный специалист в области геронтологии А. А. Богомолец в 1940 году выдвинул теорию первичного постарения соединительной ткани вследствие потери коллои-дами своих первоначальных свойств. И сегодня метаболические теории по-прежнему в цен¬тре внимания исследователей. Среди них: углеводная гипотеза, в которой глюкоза опреде¬ляется как «медиатор старения»; теория накопления пигментных тел, и прежде всего липо¬фусцина; кальциевая теория Ганса Селье, объясняющая старение снижением работы каль¬циевых насосов; теория свободных радикалов. Выдвинутая в 1957 году теория свободнора-дикального повреждения макромолекул, в том числе ДНК, в настоящее время широко разрабатывается. В этом аспекте обсуждается важнейшая роль супероксидного ра¬дикала как основного геронтогенного фактора и антиоксидантных систем, в том числе супероксиддисмутазы как мощного механизма противостояния старению. Стало ясно, что защита клеток от свободных радикалов осуществляется системой репарации, состоящей из низкомолекулярных антиоксидантов и антиокислительных ферментов; однако возможности этой системы с возрастом снижаются.

Не менее популярными являются конформационные теории, объясняющие старение как результат конформационных изменений макромолекул на уровне вторичной, третичной и четвертичной структур. В рамках этого направления предложены мембранные теории и теория поперечных сшивок макромолекул. Согласно мембранным теориям при старении меняется структура мембран, что существенно изменяет ее свойства, в том числе нарушает транспорт веществ, а тем самым и функции клетки. Предполагается, что в основе возраст¬ных изменений клеточных мембран лежат свободнорадикалъные процессы, а также сшивки макромолекул. Согласно теории поперечных сшивок впервые предложенной Ф. Верцар в 40-х годах, при старении за счет образования дисульфидных мостиков (эти мостики пред¬ставляют собой окисленную форму сульфгидрильных групп) усиливаются межмолекуляр¬ные связи, что снижает функциональные возможности макромолекул. Это, в частности, доказано в отношении коллагена и эластина, составляющих основу соединительной ткани. Недавно установлено, что для белков головного мозга старых людей действительно характерна большая сшитость.

Клеточные теории старения определяют первичными именно клеточные механизма геронтогенеза. Истоки этих теорий восходят к воззрениям К. Бернара, А. Вейсмана, И.И, Мечникова, А. А. Богомольца. В частности, И.И. Мечников связывал старение с процессом замещения «благородных тканей» соединительной тканью. Однако сегодня стало ясно, что основой клеточного старения являются, скорее всего, молекулярные изменения, о которых говорилось выше. В рамках клеточных теорий была выдвинута иммунологическая теория, которая объясняла старение как следствие иммуннодефицитного состояния организма, сни¬жения иммунного надзора и как результат активации продукции аутоантител (аутоиммун¬ная теория).

Организменные теории рассматривают старение как функцию целостного организма. В рамках этого направления предложены теории «биологических часов», теории эволюци¬онного происхождения старения, теории, рассматривающие старение как результат разви¬тия, дифференцировки и специализации тканей, а также адаптационно-регуляторные тео¬рии. Последняя группа теорий, по мнению Л.З. Теля (1997), является наиболее перспектив¬ной, так как ока интегрирует существующие представления о геронтогенезе и связывает процессы, происходящие на молекулярном и клеточном уровне, с механизмами адаптации организма к изменяющимся условиям внешней среды. Старение рассматривается как про¬цесс интеграции микроповреждений, возникающих пpи каждои отдельном акте адаптации в системах немедленного ответа и в системах обеспсчения. Чем выше ннтенсивность ответа организма на адаптогенные или стрессовые факторы, тем выше скорость наступления ста¬рости. Доказательством этому служит, в частности, то, что длительное напряжение адаптационных процессов влечет изменения, сходные со старческими. Кроме того давно известно, что долгожитльству же как короткожительству свойственна определенная эндемичность. Так, долгожительство встречается преимущественно в сельских местностях с уме¬ренным климатом и благоприятным жизненным укладом. Одновременно в очень жарких странах, либо в районах Севера, и Заполярья, где предъявляются повышенные требования к адаптационным возможностям организма, отмечается короткожительство, более ран¬нее наступление старческих изменений и возрастной патологии. По мнению Л.З. Теля, интенсивные физические нагрузки, характерные для спорта, так же как и интенсивная умственная деятельность, — это мощные факторы старения организма. В то же время умеренная физическая нагрузка и умеренное закаливание повышают адаптационные возможности организма и противостоят развитию патологии. Таким образом, старение согласно Л.З.Телю — это длительный и необходи¬мый организму процесс адаптации, протекающий с постоянным понижением функцио¬нальных способностей, но именно за счет этого — с сохранением равновесия и слаженно¬сти в функционировании клеток, органов и систем и, в конечном счете с сохранением жиз¬ни. В эволюции старение выработалось и закрепилось вместе со способностью к адапта¬ции; оно протекает тем интенсивнее, чем выше у организма адаптационные способности. Старение как физиологический процесс не может быть строго детерминирован опреде¬ленными генетическими структурами, но способностью к старению (как и способность к адаптации) обусловлена всей совокупностью генетического материала. Старение орга¬низма протекает взаимосвязано на всех его уровнях — от молекулярного до организменного и биоценозного. При этом нельзя назвать какой-либо уровень доминирующим. Чем ниже рассматриваемый уровень организации, тем древнее выработавшийся на этом уров¬не механизм старения.

Надорганизменные теории старения утверждают, что ведущей причиной старения яв¬ляются неблагоприятные воздействия окружающей среды, в том числе радиации. Представленные данные показывают, что вопрос о механизмах старения и причинах, его вызывающих, во многом, остается еще неясным.

Инволюционные изменения в нервной системе развиваются медленнее, чем в других органах. Снижение массы и объема мозга, уменьшение поверхности коры больших полу¬шарий, увеличение размеров желудочков мозга начинает происходить после 60 лет. К 80 годам масса мозга снижается всего на 6—7%. При старении уменьшается плотность нейро¬нов (особенно, в префронтальной и височной зонах коры, в мозжечке), но возрастает коли¬чество глиальных клеток. Число нейронов в мозгу уменьшается на 10—20%, а в некоторых его участках — на 30—50%. Характерным признаком старения является накопление в меж¬клеточном пространстве амилоидных субстанций, а в нейронах — липофусцина, состояще¬го из белка и липидов (продуктов жизнедеятельности нейрона), скорость накопления кото¬рого возрастает при стрессах и при дефиците витамина Е.

С возрастом снижается мозговой кровоток, уменьшается способность нейронов утили¬зировать глюкозу. За счет уменьшения активности ферментов, участвующих в синтезе ме¬диаторов, в различных отделах головного мозга снижается уровень ацетилхолина, дофами¬на, серотонина, норадреналина, гамма-аминомасляной кислоты, гомованилиновой кисло-ты и других нейромедиаторов. Это объясняет инволюционные изменение ВНД человека, а также высокую вероятность развития старческой депрессии, старческого слабоумия, бо¬лезни Паркинсона.

При старении в нейронах снижается интенсивность работы натрий - калиевого и кальцие¬вого насосов, величина мембранного потенциала клетки, повышается длительность потенци¬ала действия и абсолютной рефрактерной фазы, уменьшается лабильность, снижается ско¬рость проведения возбуждения по нервным волокнам (в том числе за счет уменьшения тол¬щины миелиновой оболочки), а также скорость синалтической передачи, нарушается эффек¬тивность реципрокного и других видов центрального торможения, уменьшается взаимодей¬ствие между различными центрами головного и спинного мозга, что снижает эффективность регуляции и интегративной деятельности мозга. С возрастом повышается порог безуслов¬ных рефлекторных реакций, снижаются сухожильные рефлексы; особенно выражено ослаб¬ление ахилловых рефлексов. После 60 лет существенно снижаются корнеальные, коныонктивальные, брюшные и подошвенные рефлексы. С возрастом нарастает вероятность проявле¬ния оральных автоматизмов, например, хоботкового рефлекса, рефлекса Маринеско.

При старении возбудимость отдельных нервных центров изменяется неравномерно, в результате чего сглаживаются различия в возбудимости различных отделов мозга, развива¬ется изовозбудимость. Это приводит к нарушению интегративной деятельности мозга, спо¬собствует возникновению неадекватных реакций, неврозов. В старости повышается чувст¬вительность ряда мозговых структур к БАВ и лекарственным препаратам.

Наиболее выражены морфологические и функциональные возрастные изменения в коре больших полушарий, лимбической системе (в том числе в гиппокампе), базальных гангли¬ях. В меньшей степени они характерны для мозжечка, ствола мозга и спинного мозга.

Существенные изменения происходят в вегетативной нервной системе: они связаны с дистрофическими процессами, происходящими во всех ее звеньях. Это, в частности, прояв¬ляется в удлинении латентного времени вегетативных рефлексов, например, латентного периода дермографизма, в ослаблении силы рефлексов, в торпидности их проявления. Осо¬бое значение для процессов старения имеют изменения, возникающие в высших вегетатив¬ных центрах. Так, например, при старении появляется «гипоталамическая дезинформация», т.е. неадекватная реакция нейронов гипоталамуса на информацию из внутренней среды ор¬ганизма. Полагают, что именно возрастные изменения гипоталамуса являются основным «виновником» развития артериальной гипертензии, коронарной недостаточности, диабета. Этим же объясняется снижение стресс-реакции у пожилых и старых людей, что уменьшает их адаптивные возможности.

После 30 лет у людей, ведущих малоподвижный образ жизни, начинает снижаться масса мышц, падает мышечная сила. У мужчин этот процесс коррелирует со снижением продук¬ции андрогенов. Одновременно при старении нарушаются механизмы нервной регуляции произвольных движений, позы и равновесия. С возрастом увеличивается время проявления простых и сложных двигательных реакций, движения утрачивают плавность, походка ста¬новится медленной и неуверенной, утрачивается способность быстро и адекватно коррек¬тировать центр тяжести тела при нарушении равновесия. Все это ограничивает двигательную активность людей старшего возраста. Достаточно высокая мышечная активность, адекват¬ная физиологическим возможностям организма, является мощным фактором, препятству¬ющим старению.

При старении в костях, хрящах и связочном аппарате позвоночника и конечностей про¬исходят выраженные дистрофически-деструктивные изменения. Они проявляются такими явлениями, как остеопороз и гиперпластический процесс. Одновременно возникают компенсаторно-приспособительные реакции, направленные на восстановление потерянной функции и структуры (костно-хрящевые разрастания краев тел позвонков и дисков, измене¬ние их формы, изменение кривизны позвоночника). Возрастной остеопороз, т.е. разреже¬ние костной массы или рарефикация — это снижение массы костей в результате уменьше¬ния в них матрикса и числа костных перекладин. Остеопороз обусловлен нарушением син¬теза ферментно-белковых систем в костной ткани, которое возникает в результате накопле¬ния дефектов в нуклеотидном составе ДНК. После 40 лет каждые 10 лет мужчины теряют до 3% костной массы, а женщины — до 8%.; у них заместительная терапия эстрогенами замедляет остеопороз. Вследствие недостатка витамина Д при старении нарушается и про¬цесс кальцификации скелета, что приводит к остеомаляции, т.е. к размягчению костей. Все это уменьшает прочность костей на сжатие, растяжение и изгиб. Например, у молодых людей костная ткань поясничного позвонка разрушается при нагрузке в 800—1000 Н/см2, а у по¬жилых и старых людей — при нагрузке в 300—400 Н/см2. Остеопороз повышает риск пе-релома костей у пожилых и старых людей, особенно у женщин.

После 50 лет в суставах (главным образом, в мелких суставах кистей, в суставах позво¬ночника) вследствие изменения сосудов синовиальной оболочки и многочисленных травматизаций происходят выраженные изменения хрящей (истончение, потеря эластичнос¬ти), что ведет к развитию остеоартритов. Этому способствует и дистрофически-деструк-тивные процессы в костной ткани, за счет которых изменяется форма и сближаются сустав¬ные концы костей с увеличением площади соприкосновения и утолщением их рельефа.

При старении на поверхности тел позвонков появляются патологические костные наро¬сты (остеофиты), которые сдавливают корешки спинномозговых нервов, вызывая тем са¬мым острые боли. Эту симптоматику остеохондроза усиливает такое явление, как истонче¬ние межпозвоночных дисков, происходящее в результате потери воды и других деструктив¬но-дистрофических процессов.

При старении у многих людей увеличение кривизны позвоночника в сагиттальной и фронтальной плоскостях, снижение высоты позвоночных дисков и толщины хряща костей, образующих суставы, приводит к снижению роста. Каждые 20 лет рост уменьшается при¬мерно на 1,27 см.

При старении существенные изменения происходят в сенсорных системах. Наиболее выражены они в зрительном и слуховом анализаторе. В целом они сводятся к постепенно¬му снижению сенсорной чувствительности.

Зрение. При старении происходят следующие изменения. 1) Потеря хрусталиком элас¬тичности, приводящая к утрате аккомодационной способности глаза и развитию старчес¬кой дальнозоркости (пресбиопии). Это явление представляет собой один из первых призна¬ков старения. Оно связано с перемещением волокон хрусталика с периферии к центру, где из них постепенно формируется плотное ядро хрусталика, лишающего его эластичности. В 60—65 лет аккомодация уже практически полностью отсутствует. 2) Разрастание » сет¬чатке новых кровеносных сосудов, обладающих повышенной проницаемостью, за счет чего в сетчатке происходят точечные кровоизлияния и отек (эксудация). 3) Накопление в сетчат¬ке поврежденных клеток, которые являются барьером для световых волн, поступающих к фоторецепторам. 4) Дистрофические изменения сетчатки, приводящие к снижению остро¬ты зрения. 5) Появление в стекловидном теле светонепроницаемых телец, ощущаемых в виде плывущих в поле зрения черных точек. 6) Появление старческой дуги (геронтоксона) или кольцевого помутнения роговицы, связанной с липидной инфильтрацией роговой обо¬лочки. 7) Появление старческого птоза, обусловленного атрофией мышцы, поднимающей верхнее веко, старческого энофтальма, вызванного атрофией жировой клетчатки орбиты, 8) Снижение скорости зрачка на световое раздражение, критической частоты мельканий, т.е. порога слияния, контрастной чувствительности, световой и цветовой чувствительнос¬ти. Принято считать, что для оценки биологического возраста человека можно использо¬вать такие показатели состояния зрительного анализатора, как сила аккомодации, критиче¬ская частота мельканий", минимальный порог чувствительности к свету глаза, адаптирован¬ного к темноте, и другие.

Помимо физиологических, обусловленных старением организма изменений, для пожи¬лого и старческого возраста характерны такие заболевания глаза как катаракта, т.е. помут¬нение хрусталика, глаукома (офтальмотонус, или повышение внутриглазного давления) и атрофия зрительного нерва. Эти заболевания возникают в результате дегенеративно-дис¬трофических процессов, происходящих на этапах позднего онтогенеза. Появление этих за¬болеваний в более молодые годы указывает на преждевременное старение организма.

Слух. Возрастные изменения органа слуха обнаруживаются уже после 20 лет. Однако субъективно снижение остроты слуха (старческая тугоухость, или пресбиакузия) проявля¬ется после 40 лет. Как правило, при старении прежде всего понижается восприятие звуков высокой частоты, а также ухудшается разборчивость речи при еще хорошем восприятии

тонов средних и низких частот, т.е. частот речевой зоны (250—2000 Гц). При старении сни¬жается способность различать тона, возрастают пороги костной и воздушной проводимос¬ти. Возрастные изменения касаются как звукопроводящего, так и звуковоспринимающего отделов слухового анализатора. Так, в среднем ухе при старении происходит остеопороз слуховых косточек, атеросклероз внутрикостных сосудов, атрофия суставов между слухо¬выми косточками (отосклероз); однако эти изменения не оказывают существенного влия¬ния на слуховую функцию. Старческая тугоухость обусловлена, главным образом, измене¬ниями в звуковоспринимающем отделе, среди которых особое значение имеют такие, как снижение эластичности и увеличение ригидности основной мембраны, а также атрофия сосудистой полоски, нейронов спирального ганглия улитки, волокон слухового нерва, ядер продолговатого мозга, нейронов слуховой коры.

Вкус. При старении число вкусовых луковиц уменьшается, особенно в передней части языка. На фоне сниженной продукции слюны это приводит к уменьшению вкусовых ощу¬щений. Курение способствует регрессу вкусовой функции. До 50 лет преобладающим явля¬ется сладкий вкус, а затем — кислый. Считается, что вкус, как и обоняние, это филогенети¬чески древнее чувство, которое в онтогенезе формируется очень рано и сохраняется даже в самой глубокой старости. Однако у некоторых пожилых людей снижение вкусовой чувст¬вительности бывает настолько сильным, что вызывает серьезные проблемы, например, че¬ловек может не есть, потому что ничто не нравится ему на вкус.

Обоняние. При старении происходит атрофические изменения в слизистой носа, а также дегенерация обонятельных нейронов. Все это ведет к снижению обоняния, которое отчет¬ливо начинает проявляется после 60 лет. Однако, как и вкусовая чувствительность, обоня¬ние сохраняется даже у долгожителей, В отдельных случаях снижение обоняния приводит к трагедии: старый человек, например, может не чувствовать утечки газа.

Болевая, температурная н тактильная чувствительность. При старении болевая и темпе¬ратурная чувствительность снижаются не так выражено, как другие виды чувствительнос¬ти. Считается, что первые признаки снижения болевой чувствительности появляются в 30 лет. Тактильная чувствительность снижается после 60 лет; при этом уменьшается вос-приятие прикосновения, давления и особенно вибрации. Например, у долгожителей часто наблюдается полное выпадение вибрационной чувствительности. Полагают, что тест на вибрационную чувствительность может использоваться при определении биологического возраста на поздних этапах онтогенеза.

С возрастом уменьшается сила, подвижность и уравновешенность основных нервных процессов, ослабевает процесс внутреннего торможения, что некоторые авторы объясняют снижением активирующего влияния ретикулярной формации на кору больших полушарий. При старении процессы истощения нейронов начинают преобладать над процессами вос¬становления. В целом, такие изменения приводят к снижению работоспособности, расст¬ройству сна, эмоциональной неустойчивости н раздражительности, к ослаблению внима¬ния и памяти, к нарушению сложных форм психической деятельности и целенаправленного поведения, к появлению дефектов поведения. В частности, известно, что продолжитель¬ность сна снижается наиболее заметно после 65 лет. С возрастом увеличивается число про¬буждений, прерывающих сон, снижается доля быстрого сна, появляется склонность к днев¬ному сну. Возможно, поэтому у пожилых и старых людей в ЭЭГ изменены характеристики а - ритма (он становится более редким и низкоамплитудным); появляются или усиливают¬ся медленные колебания ЭЭГ. По мере старения ухудшаются различные процессы мнестической деятельности — функции запоминания, хранения и воспроизведения, а также усили¬вается процесс забывания. Кратковременная память значительно ослабевает и часто быва¬ет нарушенной; нередко наблюдается явление ретроградной амнезии. Долговременная па¬мять сохраняется хорошо: условнорефлекторные связи, упроченные в течение жизни, снижаются только в глубокой старости. В логико-смысловой памяти изменения касаются наи¬более сложных и редко «используемых» структур. Запоминание материала, не организо¬ванного по смыслу, представляет большую трудность, чем материала, объединенного в смыс¬ловые системы. Условные рефлексы вырабатываются труднее, а угасание их происходят медленнее, чем в молодом возрасте. Способность к обучению снижается. У пожилых и старых людей уменьшается способность к концептуальной деятельности, снижается рассудоч¬ность. Речь сохраняется относительно хорошо, однако из-за ослабления внутреннего тор¬можения у пожилых и старых людей появляется многословностъ. Полагают, что оптимум развития интеллектуальных функций приходится на 18—20 лет. Если логическую способность 20-летних принять за 100%, то в 30 лет она будет равна 96%, в 40 лет — 87%, в 50 лет — 80%, в 60 лет — 75%. Вербально-логическне функции достигают первого оптимума в молодости, затем они могут вторично возрастать в зрелом возрасте (до 50 лет), снижаясь после 60 лет- Задачи, требующие для своего решения находчивости, воображения и изобретательности, в пожилом и старческом возрасте решаются с большим трудом; в этот возрасте значительно легче решение задач, основанных на использовании жизненного опыта. У пожилых и старых людей наблюдаются заострение черт характера, немотивированнаяоставляет основу нарушений психологи¬ческой адаптации в старческом возрасте, У пожилых растет тревожность и инвертированность, снижается эмоциональность. На фоне неблагоприятных условий жизни, пр« отсутствии рационально построенного режима дня эти изменения способствуют появле¬нию характерных для позднего онтогенеза психических синдромов и болезней, в том числе депрессии пожилых, бредовых психозов (параноиды), галлюцинозов позднего возраста, старческого слабоумия (сенильной деменции), ранним и злокачественным вариантом которой является болезнь Альцгеймера. Согласно К. Байеру и Л. Шейнбергу (1997) она обычно на¬чинает проявляться к 65 годам. Вероятность этого заболевания достаточно велика (напри¬мер, в США — это 10—16%) и зависит от генетической предрасположенности. К ранним симптомам этой болезни относят потерю памяти на недавние события, дезориентацию, снижение спонтанных эмоциональных реакций. По мере развития болезни человек утрачивает способность читать, писать и считать. Постепенно помрачается сознание, больней перестает узнавать близких, он может постоянно говорить, хотя и бессвязно. В конечном, итоге наступают судороги и смерть. Пока нет способов предотвратить развитие болезни Альцгеймера.

63. Кровяное давление, факторы его определяющие. Изменение кровяного давления по ходу сосудистого русла. Особенности движения крови по артериям.

Кровяное давление — давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах, диффузию газов и фильтрацию растворов ингредиентов плазмы крови через мембраны капилляров в ткани (обмен веществ), а также в почечных клубочках (образование мочи).

В соответствии с анатомо-физиологическим разделением сердечно-сосудистой системы различают внутрисердечное, артериальное, капиллярное и венозное К. д., измеряемое либо в миллиметрах водяного столба (в венах), либо миллиметрах ртутного столба (в других сосудах и в сердце). Рекомендуемое, согласно Международной системе единиц (СИ), выражение величин К. д. в паскалях (1 мм рт. ст. = 133,3 Па) в медицинской практике не используется. В артериальных сосудах, где К. д., как и в сердце, значительно колеблется в зависимости от фазы сердечного цикла, различают систолическое и диастолическое (в конце диастолы) артериальное давление, а также пульсовую амплитуду колебаний (разница между величинами систолического и диастолического АД), или пульсовое АД. Среднюю от изменений за весь сердечный цикл величину К. д., определяющую среднюю скорость кровотока в сосудах, называют средним гемодинамическим давлением.

Измерение К. д. относится к наиболее широко применяемым дополнительным методам обследования больного, т.к., во-первых, обнаружение изменений К. д. имеет важное значение в диагностике многих болезней сердечно-сосудистой системы и различных патологических состояний; во-вторых, резко выраженное повышение или понижение К. д. само по себе может быть причиной тяжелых гемодинамических расстройств, угрожающих жизни больного. Наиболее распространено измерение артериального давления в большом круге кровообращения. В условиях стационара при необходимости измеряют давление в локтевой или других периферических венах; в специализированных отделениях с диагностической целью нередко измеряют К. д. в полостях сердца, аорте, в легочном стволе, иногда в сосудах портальной системы. Для оценки некоторых важных параметров системной гемодинамики в ряде случаев необходимо измерять центральное венозное давление — давление в верхней и нижней полых венах.

ФИЗИОЛОГИЯ

Кровяное давление характеризуется силой, с которой кровь воздействует на стенки сосудов перпендикулярно их поверхности. Величина К. д. в каждый данный момент отражает уровень потенциальной механической энергии в сосудистом русле, способной при перепаде давления трансформироваться в кинетическую энергию потока крови в сосудах или в работу, затрачиваемую на фильтрацию растворов через мембраны капилляров. По мере расхода энергии на обеспечение этих процессов К. д. снижается.

Одним из важнейших условий формирования К. д. в кровеносных сосудах является заполненность их кровью в объеме, соизмеримом с емкостью полости сосудов. Эластичные стенки сосудов оказывают упругое сопротивление их растяжению объемом нагнетаемой крови, которое в норме зависит от степени напряжения гладких мышц, т.е. тонуса сосудов. В изолированной сосудистой камере силы упругого напряжения ее стенок порождают в крови уравновешивающие их силы — давление. Чем выше тонус стенок камеры, тем меньше ее вместимость и тем выше К. д. при неизменном объеме содержащейся в камере крови, а при неизменном сосудистом тонусе К. д. тем выше, чем больше нагнетаемый в камеру объем крови. В реальных условиях кровообращения зависимость К. д. от объема содержащейся в сосудах крови (объема циркулирующей крови) менее четкая, чем в условиях изолированного сосуда, но она проявляется в случае патологических изменений массы циркулирующей крови, например, резким падением К. д. при массивной кровопотере или при уменьшении объема плазмы вследствие обезвоживания организма. Аналогично падает К. д. при патологическом увеличении вместимости сосудистого русла, например вследствие острой системной гипотонии вен.

Основным энергетическим источником для нагнетания крови и создания К. д. в сердечно-сосудистой системе служит работа сердца как нагнетающего насоса. Вспомогательную роль в формировании К. д. играют внешнее сдавление сосудов (преимущественно капилляров и вен) сокращающейся скелетной мускулатурой, периодические волнообразные сокращения вен, а также воздействие гравитации (вес крови), особенно сказывающееся на величине К. д. в венах.

Внутрисердечное давление в полостях предсердий и желудочков сердца значительно различается в фазах систолы и диастолы, а в тонкостенных предсердиях оно также существенно зависит от колебаний внутригрудного давления по фазам дыхания, принимая иногда в фазе вдоха отрицательные значения. В начале диастолы, когда миокард расслаблен, заполнение камер сердца кровью происходит при минимальном давлении в них, близком к нулю. В период систолы предсердий отмечается небольшой прирост давления в них и в желудочках сердца. Давление в правом предсердии, в норме не превышающее обычно 2—3 мм рт. ст., принимают за так называемый флебостатический уровень, по отношению к которому оценивают величину К. д. в венах и других сосудах большого круга кровообращения.

В период систолы желудочков, когда клапаны сердца закрыты, практически вся энергия сокращения мускулатуры желудочков расходуется на объемное сжатие содержащейся в них крови, порождающее в ней реактивное напряжение в форме давления. Внутрижелудочковое давление нарастает до тех пор, пока в левом желудочке оно не превысит давления в аорте, а в правом — давления в легочном стволе, в связи с чем клапаны этих сосудов открываются и происходит изгнание крови из желудочков, по окончании которого начинается диастола, и К. д. в желудочках резко падает.

Артериальное давление формируется за счет энергии систолы желудочков в период изгнания из них крови, когда каждый желудочек и артерии соответствующего ему круга кровообращения становятся единой камерой, и сжатие крови стенками желудочков распространяется на кровь в артериальных стволах, а изгоняемая в артерии порция крови приобретает кинетическую энергию, равную половине произведения массы этой порции на квадрат скорости изгнания. Соответственно энергия, сообщаемая артериальной крови в период изгнания, имеет тем большие значения, чем больше ударный объем сердца и чем выше скорость изгнания, зависимая от величины и скорости нарастания внутрижелудочкового давления, т.е. от мощности сокращения желудочков. Толчкообразное, в виде удара, поступление крови из желудочков сердца вызывает локальное растяжение стенок аорты и легочного ствола и порождает ударную волну давления, распространение которой с перемещением локального растяжения стенки по длине артерии обусловливает формирование артериального пульса; графическое отображение последнего в форме сфигмограммы или плетизмограммы соответствует и отображению динамики К. д. в сосуде по фазам сердечного цикла.

Основной причиной трансформации большей части энергии сердечного выброса в артериальное давление, а не в кинетическую энергию потока является сопротивление кровотоку в сосудах (тем большее, чем меньше их просвет, больше их длина и выше вязкость крови), формируемое в основном на периферии артериального русла, в мелких артериях и артериолах, называемых сосудами сопротивления, или резистивными сосудами. Затруднение току крови на уровне этих сосудов создает в расположенных проксимально от них артериях торможение потока и условия для сжатия крови в период изгнания ее систолического объема из желудочков. Чем выше периферическое сопротивление, тем большая часть энергии сердечного выброса трансформируется в систолический прирост АД, определяя величину пульсового давления (частично энергия трансформируется в тепло от трения крови о стенки сосудов). Роль периферического сопротивления кровотоку в формировании К. д. наглядно иллюстрируется различиями АД в большом и малом кругах кровообращения. В последнем, имеющем более короткое и широкое сосудистое русло, сопротивление кровотоку значительно меньшее, чем в большом круге кровообращения, поэтому при равных скоростях изгнания одинаковых систолических объемов крови из левого и правого желудочков давление в легочном стволе примерно в 6 раз меньше, чем в аорте.

Систолическое АД складывается из величин пульсового и диастолического давления. Истинная его величина, называемая боковым систолическим АД, может быть измерена с помощью манометрической трубки, введенной в просвет артерии перпендикулярно оси тока крови. Если внезапно прекратить кровоток в артерии путем полного пережатия ее дистальнее манометрической трубки (или расположить просвет трубки против тока крови), то систолическое АД сразу возрастает за счет кинетической энергии потока крови. Эту более высокую величину К. д. называют конечным, или максимальным, или полным, систолическим АД, т.к. она эквивалентна практически полной энергии крови в период систолы. И боковое, и максимальное систолическое К. д. в артериях конечностей человека может быть измерено бескровно с помощью артериальной тахоосциллографии по Савицкому. При измерении АД по Короткову определяют значения максимального систолического АД. Величина его в норме в покое составляет 100—140 мм рт. ст., боковое систолическое АД обычно на 5—15 мм ниже максимального. Истинная величина пульсового АД определяется как разница между боковым систолическим и диастолическим давлением.

Диастолическое АД формируется благодаря эластичности стенок артериальных стволов и их крупных ветвей, образующих в совокупности растяжимые артериальные камеры, называемые компрессионными (аортоартериальная камера в большом круге кровообращения и легочный ствол с крупными его ветвями — в малом). В системе жестких трубок прекращение нагнетания в них крови, как это происходит в диастоле после закрытия клапанов аорты и легочного ствола, привело бы к быстрому исчезновению давления, появившегося в период систолы. В реальной сосудистой системе энергия систолического прироста АД в значительной своей части кумулируется в форме упругого напряжения растягиваемых эластических стенок артериальных камер. Чем выше периферическое сопротивление кровотоку, тем дольше эти упругие силы обеспечивают объемное сжатие крови в артериальных камерах, поддерживая К. д., величина которого по мере оттока крови в капилляры и спадения стенок аорты и легочного ствола постепенно снижается к концу диастолы (тем больше, чем длительнее диастола). В норме диастолическое К. д. в артериях большого круга кровообращения составляет 60—90 мм рт. ст. При нормальном или увеличенном сердечном выбросе (минутном объеме кровообращения) учащение сердечных сокращений (короткая диастола) или значительное повышение периферического сопротивления кровотоку обусловливает повышение диастолического АД, поскольку равенство оттока крови из артерий и поступления в них крови из сердца достигается при большем растяжении и, следовательно, большем упругом напряжении стенок артериальных камер в конце диастолы. Если эластичность артериальных стволов и крупных артерий утрачивается (например, при атеросклерозе), то диастолическое АД снижается, т.к. часть энергии сердечного выброса, кумулируемая в норме растянутыми стенками артериальных камер, расходуется на дополнительный прирост систолического АД (с повышением пульсового) и ускорение кровотока в артериях в период изгнания.

Среднее гемодинамическое, или среднее, К. д. представляет собой среднюю величину от всех его переменных значений за сердечный цикл, определяемую как отношение площади под кривой изменений давления к длительности цикла. В артериях конечностей среднее К. д. может быть достаточно точно определено с помощью тахоосциллографии, В норме оно составляет 85—100 мм рт. ст., приближаясь к величине диастолического АД тем больше, чем длительнее диастола. Среднее АД не имеет пульсовых колебаний и может изменяться лишь в интервале нескольких сердечных циклов, являясь поэтому наиболее стабильным показателем энергии крови, значения которого определяются практически только величинами минутною объема кровоснабжения и общего периферического сопротивления кровотоку.

В артериолах, оказывающих наибольшее сопротивление кровотоку, на его преодоление расходуется значительная часть общей энергии артериальной крови; пульсовые колебания К. д. в них сглаживаются, среднее К. д. по сравнению с внутриаортальным снижается примерно в 2 раза.

Капиллярное давление зависит от давления в артериолах. Стенки капилляров не обладают тонусом; общий просвет капиллярного русла определяется числом открытых капилляров, что зависит от функции прекапиллярных сфинктеров и величины К. д. в прекапиллярах. Капилляры открываются и остаются открытыми только при положительном трансмуральном давлении — разнице междуК. д. внутри капилляра и тканевым давлением, сжимающим капилляр извне. Зависимость числа открытых капилляров от К. д. в прекапиллярах обеспечивает своеобразную саморегуляцию постоянства капиллярного К. д. Чем выше К. д. в прекапиллярах, тем многочисленнее открытые капилляры, больше их просвет и вместимость, а следовательно, и в большей степени падает К. д. на артериальном отрезке капиллярного русла. Благодаря этому механизму среднее К. д. в капиллярах отличается относительной стабильностью; на артериальных отрезках капилляров большого круга кровообращения оно составляет 30—50 мм рт. ст., а на венозных отрезках в связи с расходом энергии на преодоление сопротивления по длине капилляра и фильтрацию оно снижается до 25—15 мм рт. ст. Существенное влияние на капиллярное К. д. и его динамику на протяжении капилляра оказывает величина венозного давления.

Венозное давление на посткапиллярном отрезке мало отличается от К. д. в венозной части капилляров, но значительно падает на протяжении венозного русла, достигая в центральных венах величины, близкой к давлению в предсердии. В периферических венах, расположенных на уровне правого предсердия. К. д. в норме редко превышает 120 мм вод. ст., что соизмеримо с величиной давления кровяного столба в венах нижних конечностей при вертикальном положении тела. Участие гравитационного фактора в формировании венозного давления наименьшее при горизонтальном положении тела. В этих условиях К. д. в периферических венах формируется в основном за счет энергии притока в них крови из капилляров и зависит от сопротивления оттоку крови из вен (в норме преимущественно от внутригрудного и внутрипредсердного давления) и в меньшей степени — от тонуса вен, определяющего их вместимость для крови при данном давлении и соответственно скорость венозного возврата крови к сердцу. Патологический рост венозного К. д. в большинстве случаев обусловлен нарушением оттока из них крови.

Относительно тонкая стенка и большая поверхность вен создают предпосылки для выраженного влияния на венозное К. д. изменений внешнего давления, связанных с сокращением скелетных мышц, а также атмосферного (в кожных венах), внутригрудного (особенно в центральных венах) и внутрибрюшного (в системе воротной вены) давления. Во всех венах К. д. колеблется в зависимости от фаз дыхательного цикла, понижаясь в большинстве из них на вдохе и возрастая на выдохе. У больных с бронхиальной обструкцией эти колебания обнаруживаются визуально при осмотре шейных вен, резко набухающих в фазе выдоха и полностью спадающихся на вдохе. Пульсовые колебания К. д. в большинстве отделов венозного русла выражены слабо, являясь с основном передаточными от пульсации расположенных рядом с венами артерий (на центральные и близкие к ним вены могут передаваться пульсовые колебания К. д. в правом предсердии, что находит отражение в венном пульсе). Исключение представляет воротная вена, в которой К. д. может иметь пульсовые колебания, объясняемые возникновением в период систолы сердца так называемого гидравлического затвора для прохождения по ней крови в печень (в связи с систолическим приростом К. д. в бассейне печеночной артерии) и последующим (в период диастолы сердца) изгнанием крови из воротной вены в печень.

Значение кровяного давления для жизнедеятельности организма определяется особой ролью механической энергии для функций крови как универсального посредника в обмене веществ и энергии в организме, а также между организмом и средой обитания. Дискретные порции механической энергии, генерируемой сердцем только в период систолы, преобразованы в кровяном давлении в стабильный, действующий и в период диастолы сердца, источник энергетического снабжения транспортной функции крови, диффузии газов и процессов фильтрации в капиллярном русле, обеспечивающих непрерывность обмена веществ и энергии в организме и взаиморегуляцию функции различных органов и систем гуморальными факторами, переносимыми циркулирующей кровью.

Кинетическая энергия составляет лишь малую часть всей энергии, сообщенной крови работой сердца. Основным энергетическим источником движения крови является перепад давления между начальным и конечным отрезками сосудистого русла. В большом круге кровообращения такой перепад, или полный градиент, давления соответствует разнице величин среднего К. д. в аорте и в полых венах, которая в норме практически равна величине среднего АД. Средняя объемная скорость кровотока, выраженная, например, минутным объемом кровообращения, прямо пропорциональна полному градиенту давления, т.е. практически величине среднего АД, и обратно пропорциональна величине общего периферического сопротивления кровотоку. Эта зависимость лежит в основе расчета величины общего периферического сопротивления как отношения среднего АД к минутному объему кровообращения. Другими словами, чем выше среднее АД при неизменном сопротивлении, тем выше и кровоток в сосудах и тем большая масса обменивающихся в тканях веществ (массообмен) транспортируется в единицу времени кровью через капиллярное русло. Однако в физиологических условиях увеличение минутного объема кровообращения, необходимое для интенсификации тканевого дыхания и обмена веществ, например при физической нагрузке, как и его рациональное уменьшение для условий покоя, достигается в основном динамикой периферического сопротивления кровотоку, причем таким образом, чтобы величина среднего АД не подвергалась существенным колебаниям. Относительная стабилизация среднего АД в аортоартериальной камере с помощью специальных механизмов его регуляции создает возможность динамичных вариаций распределения кровотока между органами по их потребностям путем только локальных изменений сопротивления кровотоку.

Увеличение или уменьшение массообмена веществ на мембранах капилляров достигается зависимыми от К. д. изменениями объема капиллярного кровотока и площади мембран в основном за счет изменений числа открытых капилляров. При этом благодаря механизму саморегуляции капиллярного К. д. в каждом отдельном капилляре оно поддерживается на уровне, необходимом для оптимального режима массообмена по всей длине капилляра с учетом важности обеспечения строго определенной степени снижения К. д. в направлении к венозному отрезку.

В каждой части капилляра массообмен на мембране непосредственно зависит от величины К. д. именно в этой части. Для диффузии газов, например кислорода, значение К. д. определяется тем, что диффузия происходит благодаря разнице парциального давления (напряжения) данного газа по обе стороны мембраны, а оно есть часть общего давления в системе (в крови — часть К. д.), пропорциональная объемной концентрации данного газа. Фильтрация растворов различных веществ через мембрану обеспечивается фильтрационным давлением — разницей между величинами трансмурального давления в капилляре и онкотического давления плазмы крови, составляющего на артериальном отрезке капилляра около 30 мм рт. ст. Поскольку на этом отрезке трансмуральное давление выше онкотического, водные растворы веществ фильтруются через мембрану из плазмы в межклеточное пространство. В связи с фильтрацией воды концентрация белков в плазме капиллярной крови повышается, и онкотическое давление возрастает, достигая в средней части капилляра величины трансмурального давления (фильтрационное давление уменьшается до нуля). На венозном отрезке из-за падения К. д. по длине капилляра трансмуральное давление становится ниже онкотического (фильтрационное давление становится отрицательным), поэтому водные растворы фильтруются из межклеточного пространства в плазму, снижая ее онкотическое давление до исходных значений. Т.о., степень падения К. д. по длине капилляра определяет соотношение площадей фильтрации растворов через мембрану из плазмы в межклеточное пространство и обратно, влияя тем самым на баланс водного обмена между кровью и тканями. В случае патологического повышения венозного К. д. фильтрация жидкости из крови в артериальной части капилляра превышает возврат жидкости в кровь на венозном отрезке, что приводит к задержке жидкости в межклеточном пространстве, развитию отека.

Особенности структуры капилляров клубочков почек обеспечивают высокий уровень К. д. и положительное фильтрационное давление на всем протяжении капиллярных петель клубочка, что способствует большой скорости образования экстракапиллярного ультрафильтрата — первичной мочи. Выраженная зависимость мочеобразовательной функции почек от К. д. в артериолах и капиллярах клубочков объясняет особую физиологическую роль почечных факторов в регуляции величины К. д. в артериях больше о круга кровообращения.

Механизмы регуляции кровяного давления. Устойчивость К. д. в организме обеспечивается функциональными системами, поддерживающими оптимальный для метаболизма тканей уровень артериального давления. Основным в деятельности функциональных систем является принцип саморегуляции, благодаря которому в здоровом организме любые эпизодические колебания АД, вызванные действием физических или эмоциональных факторов, через определенное время прекращаются, и АД возвращается к исходному уровню. Механизмы саморегуляции АД в организме предполагают возможность динамичного формирования противоположных по конечному влиянию на К. д. изменений гемодинамики, называемых прессорными и депрессорными реакциями, а также наличие системы обратной связи. Прессорные реакции, приводящие к повышению АД, характеризуются увеличением минутного объема кровообращения (за счет возрастания систолического объема или учащения сердечных сокращений при неизменном систолическом объеме), повышением периферического сопротивления в результате сужения сосудов и возрастания вязкости крови, увеличением объема циркулирующей крови и др. Депрессорные реакции, направленные на снижение АД, характеризуются уменьшением минутного и систолического объемов, снижением периферического гемодинамического сопротивления за счет расширения артериол и уменьшения вязкости крови. Своеобразной формой регуляции К. д. является перераспределение регионарного кровотока, при котором повышение АД и объемной скорости крови в жизненно важных органах (сердце, головной мозг) достигается за счет кратковременного уменьшения этих показателей в других, менее значимых для существования организма органах.

Регуляция К. д. осуществляется комплексом сложно взаимодействующих нервных и гуморальных влияний на тонус сосудов и деятельность сердца. Управление прессорными и депрессорными реакциями связано с деятельностью бульбарных сосудодвигательных центров, контролируемой гипоталамическими, лимбико-ретикулярными структурами и корой большого мозга, и реализуется через изменение активности парасимпатических и симпатических нервов, регулирующих тонус сосудов, деятельность сердца, почек и эндокринных желез, гормоны которых участвуют в регуляции К. д. Среди последних наибольшее значение имеют АКТГ и вазопрессин гипофиза, адреналин и гормоны коры надпочечников, а также гормоны щитовидной и половых желез. Гуморальное звено регуляции К. д. представлено также системой ренин — ангиотензин, активность которой зависит от режима кровоснабжения и функции почек, простагландинами и рядом иных вазоактивных субстанций различного происхождения (альдостерон, кинины, вазоактивный интестинальный пептид, гистамин, серотонин и др.). Быстрая регуляция К. д., необходимая, например, при изменениях положения тела, уровня физической или эмоциональной нагрузок, осуществляется в основном динамикой активности симпатических нервов и поступления в кровь адреналина из надпочечников. Адреналин и норадреналин, выделяющийся на скончаниях симпатических нервов, возбуждают a-адренорецепторы сосудов, повышая тонус артерий и вен, и b-адренорецепторы сердца, увеличивая сердечный выброс, т.е. обусловливают развитие прессорной реакции.

Механизм обратной связи, определяющий изменения степени активности сосудодвигательных центров противоположно отклонениям величины К. д. в сосудах, обеспечивается функцией барорецепторов в сердечно-сосудистой системе, из которых наибольшее значение имеют барорецепторы синокаротидной зоны и артерий почек. При повышении АД возбуждаются барорецепторы рефлексогенных зон, усиливаются депрессорные влияния на сосудодвигательные центры, что приводит к снижению симпатической и повышению парасимпатической активности с одновременным уменьшением образования и выделения гипертензивных веществ. В результате снижается нагнетательная функция сердца, расширяются периферические сосуды и как следствие уменьшается АД. При снижении АД появляются противоположные влияния: повышается симпатическая активность, включаются гипофизарно-надпочечниковые механизмы, система ренин — ангиотензин.

Секреция ренина юкстагломерулярным аппаратом почек закономерно возрастает при снижении пульсового АД в почечных артериях, при ишемии почек, а также при дефиците в организме натрия. Ренин превращает один из белков крови (ангиотензиноген) в ангиотензин I, являющийся субстратом для образования в крови ангиотензина II, вызывающего при взаимодействии со специфическими рецепторами сосудов мощную прессорную реакцию. Один из продуктов преобразования ангиотензина (ангиотензин III) стимулирует секрецию альдостерона, изменяющего водно-солевой обмен, что также сказывается на величине К. д. Процесс образования ангиотензина II происходит с участием ангиотензинконвертирующих ферментов, блокада которых, как и блокада рецепторов ангиотензина II в сосудах, устраняет гипертензивные эффекты, связанные с активацией системы ренин — ангиотензин.

КРОВЯНОЕ ДАВЛЕНИЕ В НОРМЕ

Величина К. д. у здоровых лиц имеет существенные индивидуальные различия и подвержена заметным колебаниям под влиянием изменений положения тела, температуры окружающей среды, эмоционального и физического напряжения, а для артериального К. д. отмечена его зависимость также от пола, возраста, образа жизни, массы тела, степени физической тренированности.

Кровяное давление в малом круге кровообращения измеряют при специальных диагностических исследованиях прямым способом путем зондирования сердца и легочного ствола. В правом желудочке сердца, как у детей, так и у взрослых, величина систолического К. д. в норме варьирует от 20 до 30, а диастолического — от 1 до 3 мм рт. ст., чаще определяясь у взрослых на уровне средних значений, составляющих соответственно 25 и 2 мм рт. ст.

В легочном стволе в условиях покоя диапазон нормальных значений систолического К. д. находится в пределах 15—25, диастолического — 5—10, среднего — 12—18 мм рт. ст.; у детей дошкольного возраста диастолическое К. д. обычно составляет 7—9, среднее — 12—13 мм рт. ст. При натуживании К. д. в легочном стволе может возрастать в несколько раз.

Кровяное давление в легочных капиллярах считается нормальным при значениях его в покое от 6 до 9 мм рт. ст. иногда оно достигает 12 мм рт. ст.; обычно его величина у детей составляет 6—7, у взрослых — 7—10 мм рт. ст.

В легочных венах среднее К. д. имеет значения в пределах 4—8 мм рт. ст., т. е. превышает среднее К. д. в левом предсердии, составляющее 3—5 мм рт. ст. По фазам сердечного цикла давление в левом предсердии колеблется от 0 до 9 мм рт. ст.

Кровяное давление в большом круге кровообращения характеризуется наибольшим перепадом — от максимальной величины в левом желудочке и в аорте до минимальной в правом предсердии, где в покое оно в норме обычно не превышает 2—3 мм рт. ст., часто принимая отрицательные значения в фазе вдоха. В левом желудочке сердца К. д. к концу диастолы составляет 4—5 мм рт. ст., а в период систолы возрастает до величины, соизмеримой с величиной систолического К. д. в аорте. Пределы нормальных значений систолического К. д. в левом желудочке сердца составляют у детей 70—110, у взрослых — 100—150 мм рт. ст.

Артериальное давление при измерении его на верхних конечностях по Короткову у взрослых в покое считается нормальным в диапазоне от 100/60 до 150/90 мм рт. ст. Однако фактически диапазон нормальных индивидуальных значений АД более широк, и АД около 90/50 мм рт. ст. нередко определяется у совершенно здоровых лиц, особенно у занимающихся физическим трудом или спортом. С другой стороны, динамика АД у одного и того же человека в пределах величин, считающихся нормальными, может фактически отражать патологические изменения АД. Последнее необходимо иметь в виду прежде всего в случаях, когда такая динамика имеет характер исключительной на фоне относительно устойчивых у данного человека значений АД (например, снижение АД до 100/60 с обычных для данного индивидуума значений около 140/90 мм рт. ст. либо наоборот).

Отмечено, что в диапазоне нормальных величин у мужчин АД выше, чем у женщин; более высокие значения АД регистрируются у тучных субъектов, у жителей городов, лиц умственного труда, более низкие — у сельских жителей, у занимающихся постоянно физическим трудом, спортом. У одного и того же человека АД может отчетливо изменяться под влиянием эмоций, при изменении положения тела, в соответствии с суточными ритмами (у большинства здоровых людей АД повышается в послеполуденные и вечерние часы и снижается после 2 ч ночи). Все эти колебания происходят преимущественно за счет изменений систолического АД при относительно стабильном диастолическом.

Для оценки АД как нормального или патологического важно учитывать зависимость его величины от возраста, хотя эта зависимость, четко выражающаяся статистически, не всегда проявляется в индивидуальных значениях артериального давления.

У детей до 8 лет АД ниже, чем у взрослых. У новорожденных систолическое АД близко к 70 мм рт. ст., в ближайшие недели жизни оно повышается и к концу первого года жизни ребенка достигает 80—90 при величине диастолического АД около 40 мм рт. ст. В последующие годы жизни АД постепенно повышается, а в 12—14 лет у девочек и 14—16 лет у мальчиков отмечается ускоренный прирост показателей величины АД до значений, сопоставимых с величиной АД у взрослых. У детей в возрасте 7 лет АД имеет значения в пределах 80—110/40—70, у детей 8—13 лет — 90—120/50—80 мм рт. ст., причем у девочек 12 лет оно выше, чем у мальчиков того же возраста, а в период между 14 и 17 годами АД достигает величин 90—130/60—80 мм рт. ст., причем у мальчиков оно в среднем становится выше, чем у девочек. Как и у взрослых, отмечены различия АД у детей, проживающих в городе и в сельской местности, а также колебания его в процессе различных нагрузок. АД заметно (до 20 мм рт. ст.) повышается при возбуждении ребенка, при сосании (у грудных детей), в условиях охлаждения тела; при перегревании, например в жаркую погоду, АД снижается. У здоровых детей по окончании действия причины повышения АД (например, акта сосания) оно быстро (в течение приблизительно 3—5 мин) снижается до исходного уровня.

Повышение АД с возрастом у взрослых людей происходит постепенно, несколько ускоряясь в пожилом возрасте. Повышается главным образом систолическое АД вследствие снижения в пожилом возрасте эластичности аорты и крупных артерий, однако и у старых здоровых людей в покое АД не превышает 150/90 мм рт. ст. При физической работе или эмоциональном напряжении возможно повышение АД до 160/95 мм рт. ст., причем восстановление его исходного уровня по окончании нагрузки происходит медленнее, чем у молодых лиц, что связано с возрастными изменениями аппарата регуляции АД — снижением регулирующей функции нервно-рефлекторного звена и повышением роли гуморальных факторов в регуляции АД. Для ориентировочной оценки нормы АД у взрослых в зависимости от пола и возраста предложены различные формулы, например формула вычисления нормальной величины систолического АД как суммы двух чисел, одно из которых равно возрасту обследуемого в годах, другое составляет 65 для мужчин и 55 для женщин. Однако высокая индивидуальная вариабельность нормальных величин АД делает предпочтительной ориентацию на степень возрастания АД по годам у конкретного человека и оценку закономерности приближения величины АД к верхнему пределу нормальных значений, т.е. к 150/90 мм рт. ст. при измерении в покое.

Капиллярное давление в большом круге кровообращения несколько различается в бассейнах разных артерий. В большинстве капилляров на их артериальных отрезках ко колеблется в пределах 30—50, на венозных — 15—25 мм рт. ст. В капиллярах брыжеечных артерий К. д., по данным некоторых исследований, может составлять 10—15, а в сети разветвлений воротной вены — 6—12 мм рт. ст. В зависимости от изменений кровотока в соответствии с потребностями органов величина К. д. в их капиллярах может изменяться.

Венозное давление в существенной степени зависит от места его измерения, а также от положения тела. Поэтому для сравнения показателей венозное К. д. измеряют в горизонтальном положении тела. На протяжении венозного русла К. д. снижается; в венулах оно составляет 150—250 мм вод. ст., в центральных венах колеблется от + 4 до — 10 мм вод. ст. В локтевой вене у здоровых взрослых людей величина К. д. обычно определяется между 60 и 120 мм вод. ст.; нормальными считают значения К. д. в диапазоне 40—130 мм вод. ст., но клиническому значение реально имеют отклонения величины К. д. за пределы 30—200 мм вод. ст.

Зависимость венозного К. д. от возраста обследуемых выявляется только статистически. У детей оно нарастает с возрастом — в среднем примерно от 40 до 100 мм вод. ст.; у пожилых людей отмечается тенденция к снижению венозного К. д., что связывают с увеличением емкости венозного русла вследствие возрастного снижения тонуса вен и скелетной мускулатуры.

ПАТОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ

Отклонения К. д. от нормальных величин имеют важное клиническое значение как симптомы патологии системы кровообращения или систем его регуляции. Выраженные изменения К. д. сами по себе являются патогенными, обусловливая нарушения общего кровообращения и регионарного кровотока и играя ведущую роль в формировании таких грозных патологических состояний, какколлапс, шок, гипертонические кризы, отек легких.

Изменения К. д. в полостях сердца наблюдаются при поражениях миокарда, значительных отклонениях величин К. д. в центральных артериях и венах, а также при нарушениях внутрисердечной гемодинамики, в связи с чем измерение внутрисердечного К. д. производят для диагностики врожденных и приобретенных пороков сердца и крупных сосудов. Повышение К. д. в правом или левом предсердиях (при пороках сердца, сердечной недостаточности) приводит к системному повышению давления в венах большого или малого круга кровообращения.

Артериальная гипертензия, т.е. патологическое повышение АД в магистральных артериях большого круга кровообращения (до 160/100 мм рт. ст. и более), может быть обусловлена увеличением ударного и минутного объемов сердца, повышением кинетики сердечного сокращения, ригидностью стенок артериальной компрессионной камеры, но в большинстве случаев определяется патологическим ростом периферического сопротивления кровотоку (см. Гипертензия артериальная). Поскольку регуляция АД осуществляется сложным комплексом нейрогуморальных влияний с участием ц.н.с., почечных, эндокринных и других гуморальных факторов, артериальная гипертензия может быть симптомом различных болезней, в т.ч. болезней почек — гломерулонефрита (см.Нефриты), пиелонефрита, мочекаменной болезни, гормонально — активных опухолей гипофиза (см. Иценко — Кушинга болезнь) и надпочечников (например, альдостеромы, хромаффиномы.),тиреотоксикоза; органических заболеваний ц.н.с.; гипертонической болезни. Повышение К. д. в малом круге кровообращения (см. Гипертензия малого круга кровообращения) может быть симптомом патологии легких и легочных сосудов (в частности, тромбоэмболии легочных артерий), плевры, грудной клетки, сердца. Устойчивая артериальная гипертензия приводит к гипертрофии сердца, развитию дистрофии миокарда и может быть причиной сердечной недостаточности.

Патологическое снижение АД может быть следствием поражения миокарда, в т.ч. острого (например, при инфаркте миокарда), снижения периферического сопротивления кровотоку, кровопотери, секвестрации крови в емкостных сосудах при недостаточности венозного тонуса. Это проявляется ортостатическими расстройствами кровообращения, а при остром резко выраженном падении К. д. — картиной коллапса, шока, анурией. Устойчивая гипотензия артериальная наблюдается при заболеваниях, сопровождающихся недостаточностью гипофиза, надпочечников. При окклюзии артериальных стволов К. д. снижается только дистальнее места окклюзии. Значительное снижение К. д. в центральных артериях вследствие гиповолемии включает адаптационные механизмы так называемой централизации кровообращения — перераспределения крови преимущественно в сосуды головного мозга и сердца при резком повышении тонуса сосудов на периферии. При недостаточности этих компенсаторных механизмов возможны обморок, ишемические повреждения мозга (см. Инсульт) и миокарда (см. Ишемическая болезнь сердца).

Повышение венозного давления наблюдается либо при наличии артериовенозных шунтов, либо при нарушениях оттока крови из вен, например в результате их тромбоза, сдавливания либо вследствие повышения К. д. в предсердии. При циррозах печени развивается портальная гипертензия.

Изменения капиллярного давления обычно являются следствием первичных изменений К. д. в артериях или венах и сопровождаются нарушениями кровотока в капиллярах, а также процессов диффузии и фильтрации на капиллярных мембранах (см. Микроциркуляция). Гипертензия в венозной части капилляров приводит к развитию отека, общего (при системной венозной гипертензии) или местного, например при флеботромбозе, сдавлении вен (см. Стокса воротник). Повышение капиллярного К. д. в малом круге кровообращения в подавляющем большинстве случаев связано с нарушением оттока крови из легочных вен в левое предсердие. Это происходит при левожелудочковой сердечной недостаточности, митральном стенозе, наличии в полости левого предсердия тромба или опухоли, резко выраженной тахисистолии при мерцательной аритмии. Проявляется одышкой, кардиальной астмой, развитием отека легких.