Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamenats_bilety_lech_fak (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.47 Mб
Скачать

31. Эритроциты, их структура и физиологическое значение. Старение и разрушение эритроцитов. Физиологические эpитpоцитозы. Регуляция эритропоэза. Эритропоэтин.

Эритроциты – это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря такой форме увеличивается поверхность эритроцитов для диффузии газов. Кроме того, возрастает их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патологических эритроцитов пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там.

Мембрана эритроцитов непроницаема для катионов, кроме калия, а ее проницаемость для анионов хлора, гидрокарбонат анионов и гидроксил анионов в миллион раз больше. В мембране содержится до 52% белка. В частности, гликопротеины определяют групповую принадлежность крови и обеспечивают ее отрицательный заряд. В нее встроен Na–К–АТФ–аза, удаляющая из цитоплазмы натрий и закачивающая ионы калия. Основную массу эритроцитов составляет хемопротеин гемоглобин. Кроме того, в цитоплазме содержатся ферменты карбоангидраза, фосфатазы, холинестераза и другие ферменты.

Функции эритроцитов:

  1. Перенос кислорода от легких к тканям.

  2. Участие в транспорте СО2 от тканей к легким.

  3. Транспорт воды от тканей к легким, где она выделяется в виде пара.

  4. Участие в свертывании крови, выделяя эритроцитарные факторы свертывания.

  5. Перенос аминокислот на своей поверхности.

  6. Участвуют в регуляции вязкости крови вследствие пластичности. В результате их способности к деформации, вязкость крови в мелких сосудах меньше, чем крупных.

В одном микролитре крови мужчины содержится 4,5-5,0 млн. эритроцитов (4,5-5,0*1012/л). Женщин 3,7-4,7 млн. (3,7-4,7*1012/л).

Подсчет количества эритроцитов производится в камере Горяева. Старение эритроцитов.

Основные клетки крови человека - эритроциты циркулируют в крови максимум 120 суток, в среднем 60—90 дней. Процесс старения, а в дальнейшем - разрушение эритроцитов у здорового человекасвязано с угнетением  образования в них количества специфического вещества - АТФ в ходе метаболизма глюкозы в этой этих форменных элементах. Сниженное образование АТФ, ее дефицит нарушает в клетке процессы, которые обеспечивают ее энергией, — к ним относятся: восстановление формы эритроцитов, транспорт катионов через их мембрану и защиту содержимого эритроцитов от процессов окисления, их мембрана утрачивает сиаловые кислоты. Старение и разрушение эритроцитов вызывает также изменение мембраны эритроцитов: из первоначальных дискоцитов они превращаются в так называемые эхиноциты, т. е. эритроциты, на поверхности которых образуются многочисленные специфические выступы, и выросты.

Эритроцитозы можно подразделить на физиологические и патологические. Примером физиологического эритроцитоза является эритроциты новорожденных, когда количество эритроцитов достигает 8000000—9000000. У жителей горных местностей количество эритроцитов увеличено. Замечено также, что при подъемах на высоту количество эритроцитов быстро нарастает. Это нарастание количества красных кровяных телец в условиях горного климата объясняется опорожнением кровяных депо, когда из субпапиллярной сети кожи и из селезенки в кровь поступает запасная (депонированная) кровь, так как возникает потребность в увеличении дыхательной поверхности крови. Патологический эритроцитоз мы наблюдаем при отравлении угарным газом, при остром отравлении анилином. И в том, и в другом случае причиной эритроцитоза является остро возникающее кислородное голодание

Эритропоэз  — это одна из разновидностей процесса гемопоэза (кроветворения), в ходе которой образуются красные кровяные клетки (эритроциты). Эритропоэз стимулируется уменьшением доставки кислорода к тканям, которое детектируетсяпочками. Почки в ответ на тканевую гипоксию или ишемию выделяют гормон эритропоэтин, который стимулирует эритропоэз. Этот гормон стимулирует пролиферацию и дифференциацию клеток-предшественников красного кровяного ростка, приводя тем самым к ускоренному эритропоэзу в кроветворных тканях и к увеличению выхода эритроцитов в кровь

3. Электрокардиография - метод графической регистрации изменений разности потенциалов сердца, возникающих в течение процессов возбуждения миокарда.

Первая регистрация электрокардиосигнала, прототипа современной ЭКГ, была предпринята В. Эйнтховеном в1912 г. в Кембридже. После этого методика регистрации ЭКГ интенсивно совершенствовалась.

Сокращению сердца предшествует возбуждение кардиомиоцитов, следовательно возникновение потенциала действия и изменение заряда мембраны.(на отрицательный снаружи). Эти потенциалы хорошо распространяются по всей поверхности тела, т.к .ткани облад. хорошей электропроводностью. Но сердце в грудной клетке располагается специфично: спереди назад, сзади наперед ,справа налево, поэтому потенциалы больше уходят в левую часть тела,поэтому здесь используют 2 конечности(лев. руку и ногу),справа же только руку.

Сначала на тела прикладывают электроды: желтый на лев.руку, зеленый на лев.ногу, красный на прав.руку ,и 6 электродов на переднюю и боковую поверхность грудной клетки.

Типичная ЭКГ содержит :стандартные отведения, усиленные отведения, грудные отведения.

Стандартные отведения предложены Эйнтховеном .Здесь попарно подключают электроды:

1)лев рука, прав. рука

2) прав .рука, лев нога

3) лев рука и нога

Считывают потенциалы.

Усиленные отведения от конечностей были предложены Гольдбергом в 1942 г. Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или нога) и средним потенциалом двух других конечностей. В качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольдберга, который образуется при соединении двух конечностей через дополнительное сопротивление

Здесь так же.как и в прошлой постановке используют 3 отведения.

Грудное отведение

Грудные однополюсные отведения, предложенные Вильсоном в 1934 г., регистрируют разность потенциалов между активным положительным электродом, установленным в определенных точках на поверхности грудной клетки и отрицательным объединенным электродом Вильсона. Этот электрод образуется при соединении через дополнительные сопротивления трех конечностей (правой и левой руки, а также левой ноги), объединенный потенциал которых близок к нулю (около 0,2 мВ). Для записи ЭКГ используют 6 общепринятых позиций активного электрода на передней и боковой поверхности грудной клетки, которые в сочетании с объединенным электродом Вильсона образуют 6 грудных отведений

отведение V 1 — в четвертом межреберье по правому краю грудины;

отведение V 2 — в четвертом межреберье по левому краю грудины;

отведение V 3 — между позициями V 2 и V 4 , примерно на уровне четвертого ребра по левой парастернальной линии;

отведение V 4 — в пятом межреберье по левой срединно-ключичной линии;

отведение V 5 — на том же уровне по горизонтали, что и V 4 , по левой передней подмышечной линии;

отведение V 6 — по левой средней подмышечной линии на том же уровне по горизонтали, что и электроды отведений V 4 и V 5 .

Таким образом, наиболее широкое распространение получили 12 электрокардиографических отведений (3 стандартных, 3 усиленных однополюсных отведения от конечностей и 6 грудных).

ЭКГ достаточно длинная,т.к. в каждом отведении проводят как минимум 4 сердечных цикла.

Считывают ЭКГ по зубцам: Р,Q,R,S,T.

P- отвечает за возбуждение предсердий .Это сумма потенциалов прав. и лев. предсердий

Комплекс зубцов QRST-за потенциал действия желудочков.

Q-начало возбуждения, здесь деполяризуются внутренняя стенка и верхушка сердца

R-возбуждение затрагивает наружную стенку и основания желудочков

S-Деполяризовано все сердце, имеет мощный отрицательный заряд.

Т-постепенная реполяризация кардиомиоцитов, но не все восстанавливают свой мембр. потенциала синхронно, поэтому это самая изменчивая часть

Промежуток РQ-время прохождения возбуждения. в норме 0,12-0,20

Примеры нарушения ЭКГ

Миокардиты. У больных миокардитами различной этиологии ЭКГ специфических изменений не имеет. Чаще в ряде отведений выявляются изменения зубца Т, который бывает сглаженным или неглубоко инвертированным. Реже наблюдается небольшая депрессия сегмента SТ, иногда подъем данного сегмента, что может указывать на сопутствующее поражение перикарда.

Гипертрофическая кардиомиопатия — заболевание миокарда, характеризующееся ограниченной или диффузной гипертрофией миокарда, уменьшением полости левого желудочка, частым возникновением нарушений ритма и предрасположенностью к внезапной смерти.

Данные ЭКГ в значительной степени зависят от локализации гипертрофии миокарда. При гипертрофии и распространении ее на свободную стенку левого желудочка наиболее часто встречаются нарушения внутрижелудочковой проводимости, патологические зубцы Q и QS, блокады левой ножки пучка Гиса.

9. Электрокардиография. Анализ электрокардиограммы. Значение электрокардиографии для оценки деятельности сердца.

1. Зарегистрировать ЭКГ у испытуемого с помощью электрокардиографа в 3-х стандартных отведениях.

2. Проанализировать полученную кривую во 2-ом стандартном отведении, для чего рассчитать:

а) частоту сокращений сердца (по интервалу R-R);

б) длительность интервалов РQ, QRS;

в) длительность электрической систолы (интервал QRST);

г) систолический показатель Сп = (QRST / RR) x 100%;

д) вольтаж зубцов Р, R, Т.

3. Вклеить в протокол полученную ЭКГ-му, записать показатели.

Билет 12

1. Вегетативная нервная система: топография нервных центров, ганглиев; строение рефлекторной дуги вегетативного рефлекса; медиаторы; адрено- и холинорецепторы; виды вегетативных рефлексов. Влияние отделов вегетативной нервной системы на функции внутренних органов.

В вегетативной нервной системе выделяют симпатический и парасимпатический отделы. Эти отделы имеют центральную и периферические части. Центральные структуры расположены в среднем, продолговатом и спинном мозге; периферические представлены ганглиями и нервными волокнами. Многие внутренние органы получают как симпатическую, так и парасимпатическую

иннервацию. Влияние этих двух отделов носит антагонистический характер, но этот антагонизм относителен, Имеется много примеров, когда симпатический и парасимпатический отделы действуют синергично (например, и тот и другой увеличивают слюноотделение). Обычно повышение тонуса одного отдела вегетативной нервной системы вызывает усиление активности другого. Многие внутренние органы наряду с симпатической и парасимпатической иннервациями имеют собственный местный нервный механизм регуляции функций, в значительной степени автономный. Наличие общих черт в структурной и функциональной организации, а также данные онто- и филогенеза позволили выделить в составе вегетативной нервной системы (в периферическом ее отделе) еще и третий отдел - внутриорганный.

Симпатический отдел вегетативной нервной системы

Центры симпатической нервной системы представлены ядрами, расположенными в боковых рогах серого вещества грудного и поясничного отделов спинного мозга. Аксоны нейронов, составляющих эти ядра, выходят из спинного мозга в составе его передних корешков и в виде белых соединительных ветвей вступают в узлы пограничного симпатического ствола. Эти волокна называются преганглионарными. Здесь большинство волокон переключаются на эффекторный ганглионарный нейрон. Отростки ганглиозных клеток образуют постганглионарные волокна, которые по серой соединительной ветви вновь возвращаются в спинномозговой нерв и достигают иннервируемого органа. Часть преганглионарных волокон, выходящих из ядер спинного мозга, проходит через вертебральные ганглии, не прерываясь, и переключаются на эффекторные нейроны в превертебральных ганглиях. Превертебральные ганглии представлены чревным, верхним и нижним брыжеечными узлами. Преганглионарные волокна относятся к типу В (тонкие миелиновые), постганглионарные - к типу С (безмиелиновые). Окончания преганглионарных волокон вырабатывают ацетилхолин, постганглионарных - в основном норадреналин. Исключение составляют постганглионарные волокна, иннервирующие потовые железы. Надпочечники иннервируются симпатическими нервами, которые не прерываются в ганглиях, т.е. преганглионарными волокнами, в окончаниях которых выделяется ацетил-холин, взаимодействующий с Н-холинорецепторами. Симпатическая нервная система иннервирует все органы и ткани организма, в том числе скелетные мышцы и центральную нервную систему. При возбуждении симпатических нервов усиливается работа сердца,расслабляется мускулатура бронхов и увеличивается их просвет, снижается моторная и секреторная деятельность желудочно-кишечного тракта, происходит сокращение сфинктеров мочевого и желчного пузыря и расслабление их тел, что приводит к прекращению выделения мочи и желчи,расширяется зрачок. Симпатическая нервная система не только регулирует работу внутренних органов, но и оказывает влияние на обменные процессы протекающие в скелетных мышцах и в нервной системе.

Возбуждение симпатической нервной системы приводит к повышению кровяного давления, выходу крови из депо, поступлению в кровь глюкозы, ферментов, повышению метаболизма тканей.

Парасимпатический отдел вегетативной нервной системы

Центрами парасимпатического отдела автономной нервной системы являются ядра, находящиеся в среднем мозге (III пара черепно-мозговых нервов), продолговатом мозге (VII, IX и X пары черепно-мозговых нервов) и крестцовом отделе спинного мозга (ядра тазовых внутренних нервов). От среднего мозга отходят преганглионарные волокна парасимпатических нервов, которые входят в состав глазодвигательного нерва. Из продолговатого мозга выходят преганглионарные волокна, идущие в составе лицевого, языкоглоточного и блуждающих нервов. От крестцового отдела спинного мозга отходят преганглионарные парасимпатические волокна, которые входят в состав тазового нерва. Ганглии парасимпатической нервной системы располагаются вблизи иннервируемых органов или внутри них. Поэтому преганглионарные волокна парасимпатического отдела длинные, а постганглионарные волокна короткие по сравнению с волокнами симпатического отдела. В окончаниях как преганглионарных, так и большинства постганглионарных волокон вырабатывается ацетилхолин.. Постганглионарные парасимпатические волокна иннервируют глазные мышцы, слезные и слюнные железы, мускулатуру и железы пищеварительного тракта, трахею, гортань, легкие, предсердия, выделительные и половые органы.

При возбуждении парасимпатических нервов тормозится работа сердца (отрицательные хроно-, ино-, дромо- и батмотропное действия), повышается тонус гладкой мускулатуры бронхов,в результате чего уменьшается их просвет, сужается зрачок, стимулируются процессы пищеварения (моторика и секреция), обеспечивая тем самым восстановление уровня питательных веществ в организме, происходит опорожнение желчного пузыря, мочевого пузыря, прямой кишки. Действие парасимпатической нервной системы направлено на восстановление и поддержание постоянства состава внутренней среды организма, нарушенного в результате возбуждения симпатической нервной системы. Парасимпатическая нервная система выполняет в организме трофотропную функцию.

Внутриорганный отдел (энтеральный, метасимпатический)

К этому отделу относятся интрамуральные системы всех полых висцеральных органов, обладающих собственной автоматической двигательной активностью: сердце, бронхи, мочевой пузырь, пищеварительный тракт, матка, желчный пузырь и желч-

ные пути. Внутриорганный отдел имеет все звенья рефлекторной дуги;афферентный, вставочный и эфферентный нейроны, которые полностью находятся в органе и нервных сплетениях внутренних органов (например, ауэрбаховском и мейснеровском). Этот отдел отличается более строгой автономностью, т.е. независимостью от ЦНС, так как не имеет прямых синаптических контактов с эфферентным звеном соматической рефлекторной дуги. Все это обеспечивает надежность в деятельности органов. Внутриорганный отдел характеризуется наличием собственных сенсорного и медиаторного звеньев. Преганглионарные волокна выделяют

ацетилхолин и норадреналип, постганглионарные - АТФ и адепозин, аце/пилхолин, норадреналин, серотонип, дофамин адреналин, гистамип и т.д. Главная роль принадлежит АТФ и аденозину.

В сфере управления этого отдела находятся гладкие мышцы, всасывающий и секретирующий эпителий, локальный кровоток, местные эндокринные и иммунные механизмы. Если с помощью ганглиоблокаторов выключить внутриорганную иннервацию, то орган теряет способность к осуществлению координированной ритмической моторной функции. Основная функциональная роль внутриорганного отдела — это осуществление механизмов, обеспечивающих относительное динамическое постоянство внутренней среды и устойчивость основных физиологических функций.

Медиаторы вегетативной нервной системы и их рецепция. Влияние отделов вегетативной нервной системы на функции внутренних органов.

Медиаторы вегетативной нервной системы

Ацетилхолинявляется первым биологически активным веществом, которое было идентифицировано как нейромедиатор. Он высвобождается в окончаниях холинергических парасимпатических и симпатических волокон. Процесс освобождения медиатора является кальцийзависимым. Инактивация медиатора происходит с помощью фермента ацетилхолинэстеразы. Ацетилхолин оказывает свое воздействие на органы и ткани посредством специфическиххолинорецепторов. Действие ацетилхолина на постсинаптическую мембрану постганглионарных нейронов может быть воспроизведено никотином, а действие ацетилхолина на исполнительные органы — мускарином (токсин гриба мухомора}.На этом основании холинорецепторы разделили на Н-холинорецепторы (никотиновые) и М-холинорецепторы (мускариновые).Однако и эти виды холинорецепторов не однородны.

Н-холишорецепторы в периферических отделах вегетативной нервной системы расположены в ганглионарных синапсах симпатического и парасимпатического отделов, в каротидных клубочках и хромаффинных клетках мозгового слоя надпочечников. Возбуждение этих холинорецепторов сопровождается соответственно облегчением проведения возбуждения через ганглии, что ведет к повышению тонуса симпатического и парасимпатического отделов вегетативной нервной системы; повышением рефлекторного возбуждения дыхательного центра, в результате чего углубляется дыхание; повышением секреции адреналина. М-холииорецепторы также подразделяются на несколько типов; М,-( М2- и М3-холинорецепторы. Но все они блокируются атропином. М,-холинорецепторы находятся на обкладочиых клетках желудочных желез и их возбуждение приводит к усилению секреции соляной кислоты. М-холинорецепторы располагаются в проводящей системе сердца. Возбуждение этих рецепторов приводит к понижению концентрации цАМФ, открытию калиевых каналов и увеличению тока К+, что приводит к гиперполяризации и тормозным эффектам: брадикардии, замедлению атриовентрикулярной проводимости, ослаблению сокращений сердца, понижению потребности сердечной мышцы в кислороде. М3-холинорецепторы локализованы в основном в гладких мышцах некоторых внутренних органов и экзокринных железах. Взаимодействие ацетилхолина с этими рецепторами приводит к активации натриевых каналов, деполяризации, формированию ВПСП,вследствие чего клетки возбуждаются и происходит сокращение гладких мышц и выделение соответствующих секретов.

Норадреналин обеспечивает химическую передачу нервного импульса в норадренергических синапсах вегетативной нервной системы, Норадреналин относится к катехоламинам. Он синтезируется из аминокислоты тирозина в области пресинаптической мембраны адренергического синапса. В хромаффинных клетках надпочечников этот процесс продолжается, в результате чего образуется адреналин (тирозин-ДОФА-дофамин-норадреналин-адреналии). Инактивация норадреналина происходит с помощью ферментов катехол-о-метилтрасферазы (КОМТ) и моноаминоксидазы (МАО), а также путем обратного захвата нервными окончаниями с последующим повторным использованием. Частично норадреналин диффундирует в кровеносные сосуды. Действие норадреналина на клетку опосредуется адренорецепторами. Адренорецепторы находятся в различных тканях организма и воспринимают действие норадреналина и адреналина. Адренорецепторы делят на а-адренорецепторы и b-адренорецепторы

А1,-Адренорецепторы(постсинаптические) в основном локализованы в гладких мышцах сосудов кожи, слизистых и органов брюшной полости, а также в радиальной мышце глаза, гладких мышцах кишечника, матки, семявыносящих протоков, семенных пузырьках, капсуле селезенки, сфинктерах пищеварительного тракта и мочевого пузыря, пиломоторах. Возбуждение а,-адренорецепторов приводит к сужению радиальной мышцы глаза и расширению зрачка (мидриаз), сужению соответствующих сосудов и повышению АД, сокращению капсулы селезенки и выбросу депонированной крови, сокращению сфинктеров пищеварительного тракта и мочевого пузыря, расслаблению гладких мышц кишечника и снижению его перистальтики и т.д.

Среди A2-адренорецепторов выделяют пре- пост- и внесинаптические. Возбуждение пресинаптических а2-адренорецепторов по механизму отрицательной обратной связи уменьшает выделение норадреналина при его избытке в синаптической щели. Постсинаптические сс2-адренорецепторы находятся в бета-клетках поджелудочной железы. Их возбуждение вызывает угнетение выброса инсулина в кровь. Внесинаптические А2-адренорецепторы обнаружены преимущественно на мембране тромбоцитов, эндотелии некоторых сосудов, в жировых клетках. Возбуждение этих рецепторов вызывает сужение сосудов, агрегацию тромбоцитов, угнетение липолиза.

B1-аденорецепторы (постсинаптические} выявлены в основном в проводящей системе сердца и гладкой мышце кишечника,их возоуждение приводит к увеличению частоты сердечных сокращении, повышению проводимости и сократимости сердечной мышцы, увеличению потребности сердца в кислороде, понижению тонуса и моторной активности кишечника.

Стимуляция пресинаптических В2-адренорецепторов по механизму положитеьной обратной связи вызывает выделение норадреналина при его недостатке в синаптической щели.

Дофамин осуществляет химическую передачу нервных импульсов не только в дофаминергических синапсах ЦНС, но и во вставочных нейронах симпатических ганглиев и во внутриорганном отделе вегетативной нервной системы. В дофаминергических нейронах биосинтез катехоламинов заканчивается на дофамине. Инактивация дофамина осуществляется ферментами КОМТ и МАО, а также путем обратного нейронального захвата.

АТФ. Местом его локализации является пресинаптические терминали эффекториых нейронов внутриорганного отдела вегетативной нервной системы.при стимуляции этих окончаний выделяются пуриновые продукты распада — аденозин и ино-

зин. Действие АТФ проявляется в основном в расслаблении гладкой мускулатуры.

Одним из медиаторов внутриорганного отдела вегетативной нервной системы является серотонин, или 5-окситриптамин, который выполняет также медиаторную функцию в центральных образованиях.

Серотонин оказывает свое воздействие путем взаимодействия со специфическими серотониновыми рецепторами.

Роль медиатора в вегетативной нервной системе может играть гистамин.Наибольшее количество его находится в постганглионарных симпатических волокнах. Инактивация гистамина осуществляется ферментом диаминоксидазой. Периферические гистамшювые рецепторы встречаются во всех органах и тканях организма.

(ГАМК) — медиатором тормозного типа.

2. Анализ цикла сердечной деятельности. Основные показатели работы сердца. Минутный и систолический объем кровотока. Нормальные показатели у человека в условиях физиологического покоя и деятельности.

Сокращение камер сердца называется систолой, расслабление – диастолой. В норме частота сердечных сокращений 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии сердца и клинике для его описания используется классическая схема Уиггерса. Она делит цикл сердечной деятельности на периоды и фазы. Длительность цикла, при частоте 75 ударов в мин., составляет 0,8 сек.Длительность систолы желудочков равна 0,33с. Она включает 2 периода: период напряжения, продолжительностью 0,08 сек. и период изгнания – 0,25 сек. Период напряжения делится на две фазы: фазу асинхронного сокращения, длительностью 0,05 сек и фазу изометрического сокращения 0,03 сек. В фазе асинхронного сокращения происходит неодновременное, т.е. асинхронное сокращение волокон миокарда межжелудочковой перегородки. Затем сокращение синхронизируется и охватывает весь миокард. Давление в желудочках нарастает, и атриовентрикулярные клапаны закрываются. Однако его величина недостаточна для открывания полулунных клапанов. Начинается фаза изометрического сокращения, т.е. во время нее мышечные волокна не укорачиваются, но сила их сокращений и давление в полостях желудочков нарастает. Когда оно достигает 120-130 мм рт ст. в левом и 25-30 мм рт ст. в правом, открываются полулунные клапаны – аортальный и пульмональный. Начинается период изгнания. Он длится 0,25 сек и включает фазу быстрого и медленного изгнания. Фаза быстрого изгнания продолжается 0,12 сек., медленного – 0,13 сек. Во время фазы быстрого изгнания давление в желудочках значительно выше, чем в соответствующих сосудах, поэтому кровь из них выходит быстро. Но так как давление в сосудах нарастает, выход крови замедляется. После того, как кровь из желудочков изгоняется, начинается диастола желудочков. ЕЕ продолжительность 0,47 сек. Она включает протодиастолический период, период изометрического расслабления, период наполнения и пресистолический период. Длительность протодиастолического периода 0,04 сек. Во время него начинается расслабление миокарда желудочков. Давление в них становится ниже, чем в аорте и легочной артерии, поэтому полулунные клапаны закрываются. После этого начинается период изометрического расслабления. Его продолжительность 0,08 сек. В этот период все клапаны закрыты, и расслабление происходит без изменения длины волокон миокарда. Давление в желудочках продолжает снижаться. Когда оно уменьшается до 0, т.е. становится ниже, чем в предсердиях, открываются атриовентрикулярные клапаны. Начинается период наполнения, длительность 0,25 сек. Он включает фазу быстрого наполнения, продолжительность которой 0,08 сек., и фазу медленного наполнения – 0,17 сек. После того, как желудочки пассивно заполнились кровью, начинается пресистолический период, во время которого происходит систола предсердий. Его длительность 0,1 сек. В этот период в желудочки закачивается дополнительное количество крови. Давление в предсердиях, в период их систолы, составляет в левом 8-15 мм рт ст., а правом 3-8 мм рт ст. Отрезок времени от начала протодиастолического периода и до пресистолического, т.е. систолы предсердий, называется общей паузой. Ее продолжительность 0,4 сек. В момент общей паузы полулунные клапаны закрыты, а атриовентрикулярные открываются. Первоначально предсердия, а затем желудочки заполняются кровью. Во время общей паузы происходит пополнение энергетических запасов кардиомиоцитов, выведение из них продуктов обмена, ионов кальция и натрия, насыщение кислородом. Чем короче общая пауза, тем хуже условия работы сердца. Давление в полостях сердца в эксперименте измеряются путем пунктирования, а клинике – их катетеризацией.

Одним из важнейших показателей работы сердца является минутный объем кровообращения (МОК) - количество крови, выбрасываемое желудочками сердца в минуту. МОК левого и правого желудочков одинаков. Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл. СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. Частота сердечных сокращений — это количество сокращений сердца в минуту. Его величина равна в среднем 70 ударов в мин.