
- •Суэп. Лекции. Содержание
- •Вводная часть
- •Общие понятия, структурная схема аэп
- •Историческая справка
- •Задачи, решаемые аэп
- •Функции, выполняемые аэп
- •Электрические схемы
- •Функциональная схема (рисунок 1.3)
- •Принципиальная
- •Монтажная
- •Общая схема
- •Управление в функции времени
- •Типовой узел для дт дпт нв
- •Управление в функции скорости
- •Типовой узел для торможения противовключением ад с кз
- •Управление в функции тока
- •Управление в функции пути
- •Типовые схемы автоматического управления сд
- •Электрические защиты в релейно-контакторных системах аэп до 1000 в
- •Максимально-токовая защита
- •Минимально-токовая защита
- •Нулевая защита (защита от самозапуска)
- •Защита от затянувшегося, либо несостоявшегося пуска сд
- •Защита от выпадания из синхронизма
- •Защита от перенапряжений
- •Защита от превышения напряжения и скорости
- •Путевая защита
- •Блокировки в системах аэп
- •Защитные блокировки
- •Технологические блокировки
- •Сигнализация в системах аэп
- •Станция управления пу13-21
- •Станция управления пу65-20
- •Элементы замкнутых систем аэп постоянного тока
- •Дпт как элемент замкнутой сар
- •Передаточная функция при однозонном регулировании скорости
- •Развернутая структурная схема для однозонного аэп
- •Развернутая структурная схема для двухзонного аэп
- •Силовые преобразователи, как элемент сар
- •Регулировочные характеристики вентильных преобразователей при различных опорных напряжениях сифу
- •Передаточная функция
- •Реверсивный вентильный преобразователь с раздельным управлением
- •Реверсивные тиристорные преобразователи с совместным управлением
- •Регуляторы
- •Основные схемы включения оу
- •Схемы включения оу с ограничением входного сигнала
- •Схемы включения оу с частотно-зависимым преобразованием сигнала
- •Датчики
- •Датчики постоянного тока
- •Датчик тока на базе шунта с усилителями постоянного тока
- •Датчик, построенные на базе трансформатора переменного тока
- •Датчик постоянного тока на базе магнитодиодов
- •Датчик скорости на базе тахогенератора переменного тока
- •Импульсный датчик скорости (рисунок 3.74)
- •Датчики эдс
- •Датчик эдс на базе тахометрического моста
- •Датчик эдс с применением дн и дт
- •Датчики положения
- •Сельсинный задатчик
- •Замкнутые одноконтурные системы аэп постоянного тока
- •Статические характеристики одноконтурной системы аэп с отрицательной обратной связью по напряжению
- •Статические характеристики одноконтурной системы аэп с обратной связью по току
- •Статические характеристики одноконтурной системы аэп сотрицательной обратной связью по скорости
- •Статические характеристики двухконтурной системы аэп с отрицательной обратной связью по скорости и отсечкой по току
- •Статические характеристики одноконтурной системы аэп с отрицательной обратной связью по скорости и упреждающим токовым ограничением
- •Замкнутые системы аэп стабилизации скорости
- •Оптимизация контуров регулирования
- •Оптимизация контура регулирования на модульный оптимум, объект которого содержит большую и малую инерционности
- •Применение п-регулятора для контура, объект которого содержит большую и малую инерционности
- •Оптимизация контура на мо контура, объект которого имеет интегрирующее звено и звено с малой постоянной времени.
- •Оптимизация контура на со, объект которого содержит интегрирующее звено и звено с малой постоянной времени
- •Принципы построения многоконтурных аэп
- •Однозонный эп с подчиненным регулированием параметров с обратной связью по скорости
- •Оптимизация контура тока
- •Оптимизация контура тока с заторможенным электродвигателем
- •О запасе тиристорного преобразователя по напряжению
- •Оценка влияния внутренней обратной связи по эдс на процессы в контуре тока
- •Оптимизация контура скорости
- •Однократноинтегрирующая система аэп
- •Двукратноинтегрирующая система аэп
- •Реализация систем с подчиненным регулированием параметров
- •Принципиальная (блочная) схема двухконтурной аэп с подчиненным регулированием параметров
- •Расчет параметров и решающей цепи контура тока
- •Расчет параметров и решающей цепи контура скорости
- •Построение скоростных характеристик
- •Построение систем аэп с заданным статизмом
- •Применение задатчика интенсивности на входе контура скорости
- •Осциллограммы сигналов при пуске, торможении, реверсе с задатчиком интенсивности на входе регулятора скорости
- •Особенность работы привода с п- и пи-регуляторами скорости при наличии задатчика интенсивности на входе
- •Однозонный эп с обратной связью по эдс
- •Оптимизация контура эдс
- •Принципиальная (блочная) схема с обратной связью по эдс и датчиком напряжения
- •Стабилизация тока возбуждения в однозонных системах аэп
- •Двухзонный аэп с подчиненным регулированием параметров
- •Функциональная схема двухзонного аэп
- •Диаграмма пуска эд с выходом во вторую зону
- •Полная структурная схема двухзонного аэп с подчиненным регулированием параметров
- •Оптимизация контура потока
- •Оптимизация контура потока с датчиком тока возбуждения
- •Оптимизация контура эдс и его линеаризация
- •Принципиальная (блочная) схема управления возбуждением электродвигателя в двухзонном реверсивном по якорю аэп
- •Линеаризация контура скорости в двухзонном аэп
- •Следящие системы аэп
- •Структурная схема и режимы работы позиционной системы аэп
- •Оптимизация контура положения для режима малых перемещений
- •Аналоговая позиционная система аэп
- •Оптимизация контура положения при расчете системы в относительных единицах для режима малых перемещений
- •Оптимизация контура положения для режима средних перемещений
- •Сравнительная оценка коэффициентов регулятора положения для малого и средних перемещений
- •Режим больших перемещений
- •Применение параболического регулятора положения
- •Адаптивные системы аэп
- •Беспоисковые адаптивные аэп
- •Системы с внутренними обратными связями
- •Системы с эталонными моделями
- •Системы с самонастройкой
- •Системы с переключающейся структурой регуляторов
- •Оптимизация контура тока в режиме прерывистого тока
- •Техническая реализация адаптивного регулятора тока
- •Особенности поисковых адаптивных аэп
- •Комплектный тиристорный электропривод на базе бту 3601
- •Общие сведения о системе
- •Тиристорный преобразователь
- •Силовая часть
- •Система регулирования
- •Адаптивный регулятор тока
- •Регулятор скорости
- •Электроприводы переменного тока
- •Краткий обзор систем аэп переменного тока
- •Аэп переменного тока на базе вентильного двигателя
- •Общие сведения о работе вентильного двигателя
- •Комплектный эп переменного тока с вентильным двигателем эпб-1
Реверсивные тиристорные преобразователи с совместным управлением
При совместном управлении импульсы поступают на оба комплекта тиристоров.
Рассмотрим принцип работы на примере 3-х фазного нулевого преобразователя (см. рисунок 3.46).
Рисунок 3.46
а) если Uу = 0, то 1 = 01 , 2 = 02.
1 + 2 = 180эл. – совместное согласованное; 1 + 2 >180эл. – совместное несогласованное;
б) если Uу > 0, то 1 ВР (1 < 01) , 2 ИР (2 > 02);
в) если Uу < 0, то 1 ИР (1 > 01) , 2 BР (2 < 02).
L1, L2 – уравнительные реакторы, которые ограничивают на допустимом уровне уравнительный ток, который протекает всегда в одном направлении от (I) к (II) минуя цепь нагрузки.
Уравнительные реакторы могут быть насыщающиеся и ненасыщающиеся. Первые легче и насыщаются только током нагрузки, вторые – одновременно выполняют роль сглаживающего дросселя, большие габариты.
Рисунок 3.47
1 = 60эл. (ВР),
2 = 120эл. (ИР),
1 + 2 = 180эл.
Еd1 = Ed0cos1;
Еd2 = Ed0cos2 = Ed0cos(180 - 1) =
= –Ed0cos1, т.е. Ed1 = Ed2;
еур = е1–е2 = ел.
Причина статических уравнительных токов заключается в неравенстве мгновенных ЭДС комплектов. При совместном согласованном управлении (+) и (–) площади одинаковы, поэтому уравнительный ток имеет гранично-непрерывный характер.
При любом согласовании реверсивных комплектов ЭДС первого комплекта не должна превышать по модулю ЭДС второго комплекта, в этом случае в уравнительной ЭДС будет отсутствовать постоянная составляющая и поэтому ограничение уравнительного тока можно обеспечить за счет включения только индуктивных элементов.
iур 30%Iн.
В каждый момент времени к нагрузке подключен тот или иной комплект (неработающий в данный момент комплект прогружен только Iур). Если ЭП в двигательном режиме, то к нагрузке подключен выпрямительный комплект, если в тормозном режиме, то инвертирующий комплект (см. рисунок 3.48).
Рисунок 3.48 –
Внешние и регулировочные характеристики
при совместном несогласованном
управлении
Рисунок 3.49 –
Внешние и регулировочные характеристики
при совместном несогласованном
управлении
0 (1,2) = 900эл. (min = –max) – совместное согласованное управление;
0 (1,2) > 900эл. – совместное несогласованное управление.
Особенности динамических режимов реверсивных преобразователей с совместным управлением.
Рисунок
3.50
На рисунке при Uу1 2 = 1200эл., 1 = 600эл., при Uу2 1 = 1200эл., 2 = 600эл. В ИР комплект переходит по синусоиде, а в ВР практически мгновенно. Это вызывает в еур нескомпенсированной площади S(+), которая вызывает бросок тока Iур дин > 2Iст др.
Для уменьшения Iур дин на входе СИФУ (на выходе системы регулирования) ставят фильтр с постоянной времени (57)мс, который сглаживает скачки сигнала управления Uу. В этом случае переход в ВР затягивается, неодинаковость выравнивается и исключается причина, вызывающая Iур дин. Но при этом снижается быстродействие реверсивного преобразователя в целом.
Достоинства:
- при совместном согласованном управлении отсутствует зона ПТ, внешние характеристики линейны и однозначны регулировочные;
- максимальное быстродействие;
- при совместном несогласованном управлении меньшее значение Iур, меньше габариты уравнительных реакторов.
Недостатки:
- наличие Iур и уравнительных реакторов в силовой цепи;
- невозможно предельное использование преобразователей по установленной мощности (из-за связи min = –max).
Область применения – ЭП с малой и средней мощностью, где требуется быстродействие.