
- •С.Н. Гринфельд физические основы электроники
- •1. Электропроводность полупроводников
- •1.1. Строение и энергетические свойства кристаллов твердых тел
- •1.2. Электропроводность собственных полупроводников
- •1.3. Электропроводность примесных полупроводников
- •1.4. Дрейфовый и диффузионный токи в полупроводниках
- •2. Электронно-дырочный переход
- •2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
- •2.2. Электронно-дырочный переход при прямом напряжении
- •2.3. Электронно-дырочный переход при обратном напряжении
- •2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода
- •Полупроводниковые диоды
- •3.1. Общие характеристики диодов
- •3.2. Виды диодов
- •4. Полупроводниковые транзисторы
- •4.1. Биполярные транзисторы
- •4.1.1. Общая характеристика
- •4.1.2. Принцип действия транзистора
- •4.1.3. Схемы включения транзисторов
- •4.1.5. Влияние температуры на статические характеристики бт
- •4.16. Составной транзистор
- •4.2. Полевые транзисторы
- •4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт
- •Характеристики птуп
- •Параметры птуп
- •Эквивалентная схема птуп
- •Схемы включения полевого транзистора
- •Температурная зависимость параметров птуп
- •4.2.2. Полевые транзисторы с изолированным затвором
- •Структуры пт с изолированным затвором
- •Статические характеристики мдп-транзистора с индуцированным каналом
- •Статическая характеристика передачи (или сток – затвор)
- •Статические характеристики мдп-транзистора со встроенным каналом
- •Максимально допустимые параметры полевых транзисторов
- •5. Тиристоры
- •5.1. Классификация тиристоров
- •5.2. Диодные тиристоры (динисторы)
- •5.3. Триодные тиристоры
- •5.4. Симметричные тиристоры (симисторы)
- •5.5. Зависимость работы тиристора от температуры
- •6. Усилители
- •6.1. Классификация, основные характеристики и параметры усилителей
- •6.2. Искажения в усилителях
- •6.3. Обратные связи в усилителях
- •6.3.1. Виды обратных связей
- •6.3.2. Влияние последовательной отрицательной ос по напряжению на входное и выходное сопротивления усилителя
- •6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи
- •6.3.4. Влияние отрицательной ос на частотные искажения
- •6.3.5. Паразитные ос и способы их устранения
- •6.4. Усилители низкой частоты
- •6.5. Каскады предварительного усиления
- •6.5.1. Каскад с оэ
- •6 Рис. 6.21. График разрешенной области надежной работы транзистора.5.2. Стабилизация режима покоя каскада с оэ
- •6.5.3. Работа каскада с оэ по переменному току
- •6.5.4. Каскад с ок
- •6.5.5. Усилительный каскад на полевом транзисторе
- •6.5.6. Схема с ос (истоковый повторитель)
- •7. Усилители постоянного тока
- •7.1. Определение усилителя постоянного тока. Дрейф нуля
- •7.2. Однотактные усилители прямого усиления
- •7.3. Дифференциальные усилители
- •7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов
- •7.3.2. Схемы включения дифференциального усилителя
- •7.3.3. Коэффициент ослабления синфазного сигнала
- •7.3.4. Разновидности дифференциальных усилителей
- •8. Определение и основные характеристики операционных услителей
- •8.1. Устройство операционных усилителей
- •8.2. Характеристики операционных усилителей
- •Усилительные характеристики
- •Дрейфовые характеристики
- •Входные характеристики
- •Выходные характеристики
- •Энергетические характеристики
- •Частотные характеристики
- •Скоростные характеристики
- •8.3. Классификация оу
- •8.4. Применение операционных усилителей
- •Неинвертирующий усилитель на оу
- •Повторитель напряжения
- •И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель
- •Инвертирующий сумматор
- •У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель
- •Внешняя компенсация сдвига
- •Дифференциальный усилитель
- •Неинвертирующий сумматор
- •Интегратор
- •Дифференциатор
- •Логарифмический усилитель
- •Усилители переменного напряжения
- •9. Устройства сравнения аналоговых сигналов
- •9.1. Компараторы
- •9.2. Мультивибратор
- •10. Микроэлектроника
- •10.1. Основные определения
- •10.2. Типы Интегральных схем
- •10.2.1. Классификация ис
- •10.2.2. Полупроводниковые ис
- •10.2.3. Гибридные ис
- •10.3. Особенности интегральных схем как нового типа электронных приборов
- •ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора
- •О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки
- •Порядок выполнения работ
- •Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером
- •Описание лабораторной установки
- •Порядок выполнения работы
- •Лабораторная работа 3 дифференциального усилителя постоянного тока
- •Описание лабораторной установки
- •Порядок выполнения работы
- •Контрольная работа
- •Задание
- •Последовательность расчета усилителя
- •Последовательность Расчета усилителя в области низких частот
- •Экзаменационные вопросы
- •Литература
- •Содержание
- •Софья наумовна гринфельд физические основы электроники Учебное пособие
- •681013, Комсомольск-на-Амуре, пр. Ленина, 27.
1.4. Дрейфовый и диффузионный токи в полупроводниках
Электрический ток может возникнуть в полупроводнике только при направленном движении носителей заряда, которое создается либо под воздействием электрического поля (дрейф), либо вследствие неравномерного распределения носителей заряда по объему кристалла (диффузия). Если электрическое поле отсутствует, и носители заряда имеют в кристалле равномерную концентрацию, то электроны и дырки совершают непрерывное хаотическое тепловое движение. В результате столкновения носителей заряда друг с другом и с атомами кристаллической решетки скорость и направление их движения все время изменяются, так что тока в кристалле не будет.
Под действием приложенного к кристаллу напряжения в нем возникает электрическое поле. Движение носителей заряда упорядочивается: электроны перемещаются по направлению к положительному электроду, дырки – к отрицательному. При этом не прекращается и тепловое движение носителей заряда, вследствие которого происходят столкновения их с атомами полупроводника и примеси.
Направленное движение носителей заряда под действием сил электрического поля называют дрейфом, а вызванный этим движением ток –дрейфовым током. При этом характер тока может быть электронным, если он вызван движением электронов, или дырочным, если он создается направленным перемещением дырок.
Средняя скорость носителей заряда в электрическом поле прямо пропорциональна напряженности электрического поля:
ν=μE
Коэффициент пропорциональности называют подвижностью электронов (n), или дырок (p). Свободные электроны движутся в пространстве между узлами кристаллической решетки, а дырки – по ковалентным связям, поэтому средняя скорость, а следовательно, и подвижность электронов больше, чем дырок. У кремния подвижность носителей заряда меньше, чем у германия.
В собственных полупроводниках концентрации электронов и дырок одинаковы, но вследствие их разной подвижности электронная составляющая тока больше дырочной. В примесных полупроводниках концентрации электронов и дырок существенно отличаются, характер тока определяется основными носителями заряда: в полупроводниках р-типа – дырками, а в полупроводниках n-типа – электронами.
При неравномерной концентрации носителей заряда вероятность их столкновения друг с другом больше в тех слоях полупроводника, где их концентрация выше. Совершая хаотическое тепловое движение, носители заряда отклоняются в сторону, где меньше число столкновений, т.е. движутся в направлении уменьшения их концентрации.
Направленное движение носителей заряда из слоя с более высокой их концентрацией в слой, где концентрация ниже, называют диффузией, а ток, вызванный этим явлением, – диффузионным током. Этот ток, как и дрейфовый, может быть электронным или дырочным.
Степень неравномерности распределения носителей заряда характеризуется градиентом концентрации; его определяют как отношение изменения концентрации к изменению расстояния, на котором оно происходит. Чем больше градиент концентрации, т.е. чем резче она изменяется, тем больше диффузионный ток.
Электроны, перемещаясь из слоя с высокой концентрацией в слой с более низкой концентрацией, по мере продвижения рекомбинируют с дырками, и наоборот, диффундирующие в слой с пониженной концентрацией дырки рекомбинируют с электронами. При этом избыточная концентрация носителей заряда уменьшается.