
- •С.Н. Гринфельд физические основы электроники
- •1. Электропроводность полупроводников
- •1.1. Строение и энергетические свойства кристаллов твердых тел
- •1.2. Электропроводность собственных полупроводников
- •1.3. Электропроводность примесных полупроводников
- •1.4. Дрейфовый и диффузионный токи в полупроводниках
- •2. Электронно-дырочный переход
- •2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
- •2.2. Электронно-дырочный переход при прямом напряжении
- •2.3. Электронно-дырочный переход при обратном напряжении
- •2.4. Вольт-амперная характеристика электронно- дырочного перехода. Пробой и емкость p-n-перехода
- •Полупроводниковые диоды
- •3.1. Общие характеристики диодов
- •3.2. Виды диодов
- •4. Полупроводниковые транзисторы
- •4.1. Биполярные транзисторы
- •4.1.1. Общая характеристика
- •4.1.2. Принцип действия транзистора
- •4.1.3. Схемы включения транзисторов
- •4.1.5. Влияние температуры на статические характеристики бт
- •4.16. Составной транзистор
- •4.2. Полевые транзисторы
- •4.2.1. Полевые транзисторы с управляющим p-n переходом Структура и принцип действия пт
- •Характеристики птуп
- •Параметры птуп
- •Эквивалентная схема птуп
- •Схемы включения полевого транзистора
- •Температурная зависимость параметров птуп
- •4.2.2. Полевые транзисторы с изолированным затвором
- •Структуры пт с изолированным затвором
- •Статические характеристики мдп-транзистора с индуцированным каналом
- •Статическая характеристика передачи (или сток – затвор)
- •Статические характеристики мдп-транзистора со встроенным каналом
- •Максимально допустимые параметры полевых транзисторов
- •5. Тиристоры
- •5.1. Классификация тиристоров
- •5.2. Диодные тиристоры (динисторы)
- •5.3. Триодные тиристоры
- •5.4. Симметричные тиристоры (симисторы)
- •5.5. Зависимость работы тиристора от температуры
- •6. Усилители
- •6.1. Классификация, основные характеристики и параметры усилителей
- •6.2. Искажения в усилителях
- •6.3. Обратные связи в усилителях
- •6.3.1. Виды обратных связей
- •6.3.2. Влияние последовательной отрицательной ос по напряжению на входное и выходное сопротивления усилителя
- •6.3.3. Влияние отрицательной ос на нелинейные искажения и помехи
- •6.3.4. Влияние отрицательной ос на частотные искажения
- •6.3.5. Паразитные ос и способы их устранения
- •6.4. Усилители низкой частоты
- •6.5. Каскады предварительного усиления
- •6.5.1. Каскад с оэ
- •6 Рис. 6.21. График разрешенной области надежной работы транзистора.5.2. Стабилизация режима покоя каскада с оэ
- •6.5.3. Работа каскада с оэ по переменному току
- •6.5.4. Каскад с ок
- •6.5.5. Усилительный каскад на полевом транзисторе
- •6.5.6. Схема с ос (истоковый повторитель)
- •7. Усилители постоянного тока
- •7.1. Определение усилителя постоянного тока. Дрейф нуля
- •7.2. Однотактные усилители прямого усиления
- •7.3. Дифференциальные усилители
- •7.3.1. Схема дифференциального каскада и ее работа при подаче дифференциального и синфазного входных сигналов
- •7.3.2. Схемы включения дифференциального усилителя
- •7.3.3. Коэффициент ослабления синфазного сигнала
- •7.3.4. Разновидности дифференциальных усилителей
- •8. Определение и основные характеристики операционных услителей
- •8.1. Устройство операционных усилителей
- •8.2. Характеристики операционных усилителей
- •Усилительные характеристики
- •Дрейфовые характеристики
- •Входные характеристики
- •Выходные характеристики
- •Энергетические характеристики
- •Частотные характеристики
- •Скоростные характеристики
- •8.3. Классификация оу
- •8.4. Применение операционных усилителей
- •Неинвертирующий усилитель на оу
- •Повторитель напряжения
- •И Рис. 8.12. Схема инвертирующего усилителянвертирующий усилитель
- •Инвертирующий сумматор
- •У Рис. 8.14. Схема усредняющего усилителясредняющий усилитель
- •Внешняя компенсация сдвига
- •Дифференциальный усилитель
- •Неинвертирующий сумматор
- •Интегратор
- •Дифференциатор
- •Логарифмический усилитель
- •Усилители переменного напряжения
- •9. Устройства сравнения аналоговых сигналов
- •9.1. Компараторы
- •9.2. Мультивибратор
- •10. Микроэлектроника
- •10.1. Основные определения
- •10.2. Типы Интегральных схем
- •10.2.1. Классификация ис
- •10.2.2. Полупроводниковые ис
- •10.2.3. Гибридные ис
- •10.3. Особенности интегральных схем как нового типа электронных приборов
- •ЛабораторНые рабоТы Лабораторная работа 1 исследование статистических характеристик биполярного транзистора
- •О Рис. 1. Схема исследования характеристик транзистора по схеме с оЭписание лабораторной установки
- •Порядок выполнения работ
- •Лабораторная работа 2 исследование однокаскадного усилителя с общим эмиттером
- •Описание лабораторной установки
- •Порядок выполнения работы
- •Лабораторная работа 3 дифференциального усилителя постоянного тока
- •Описание лабораторной установки
- •Порядок выполнения работы
- •Контрольная работа
- •Задание
- •Последовательность расчета усилителя
- •Последовательность Расчета усилителя в области низких частот
- •Экзаменационные вопросы
- •Литература
- •Содержание
- •Софья наумовна гринфельд физические основы электроники Учебное пособие
- •681013, Комсомольск-на-Амуре, пр. Ленина, 27.
4. Полупроводниковые транзисторы
Свойства p-n-перехода можно использовать для создания усилителя электрических колебаний. Электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности электрических сигналов и имеющий три или более выводов, называют транзистором.
Термин «транзистор» происходит от комбинации английских слов transfer of resistor, что в переводе означает «преобразователь сопротивления».
Действие транзистора основано на управлении движением носителей зарядов в полупроводниковом кристалле.
По принципу действия транзисторы делят на два основных класса: биполярные и полевые (униполярные). В биполярных транзисторах физические процессы определяются движением носителей заряда обоих знаков – основных и неосновных. В полевых (униполярных) транзисторах, используется движение носителей одного знака (основных носителей).
Транзисторы различают:
по мощности:
-
малой мощности
Pдоп < 0,3 В т;
средней мощности
0,3 < Pдоп< 1,5 Вт;
транзисторы большой мощности
Pдоп> 1,5 Вт;
по граничной частоте пропускания
-
низкочастотные
fгр < 3 МГц
средней частоты
3 < fгр < 30 МГц
высокой частоты
30 < fгр < 300 МГц
СВЧ транзисторы
fгр > 300 МГц
Маркировка транзисторов состоит из шести символов:
первый символ (буква) обозначает материал;
второй символ (буква П или Т) обозначает: П – полевой, Т – биполярный;
третий символ (цифра) характеризует транзисторы по частоте и по мощности:
1 – малой мощности, низкой частоты;
2 – малой мощности, средней частоты;
3 – малой мощности, высокой частоты;
4 – средней мощности, низкой частоты;
5 – средней мощности, средней частоты;
6 – средней мощности, высокой частоты;
7 – большой мощности, низкой частоты;
8 – большой мощности, средней частоты;
9 – большой мощности, высокой частоты;
четвертый и пятый символы (цифры) обозначают номер разработки;
шестой символ (буква) обозначает параметры, не являющиеся классификационными.
4.1. Биполярные транзисторы
4.1.1. Общая характеристика
Биполярный транзистор(в дальнейшем просто транзистор) – это трехэлектродный полупроводниковый прибор, имеющий два взаимодействующих р-n-перехода. Транзистор (рис. 4.1) состоит из трех основных областей: эмиттерной, базовой и коллекторной. К каждой из областей имеется омический контакт.
Переход, который образуется на границе областей «эмиттер – база», называется эмиттерным, а на границе «база – коллектор» – коллекторным. Проводимость базы может быть как дырочной, так и электронной; соответственно различают транзисторы со структурами n-p-nиp-n-p. Принцип работы транзисторов обоих типов одинаков, за исключением того, что в транзисторе типаn-p-nток, текущий через базу от эмиттера к коллектору, создают электроны, а в транзисторе типаp-n-pэтот ток создают дырки. Полярность рабочих напряжений и направления токов в транзисторахn-p-n-типа иp-n-p-типа противоположны.
Н
Рис.
4.1. Конструкции биполярного транзистора
Рассматривая трехслойную полупроводниковую структуру, можно убедиться, что у транзистора нет принципиальных различий между эмиттерным и коллекторным переходами и (при включении транзистора в схему) их можно поменять местами, т.е. коллекторный переход использовать в качестве эмиттерного, а эмиттерный – в качестве коллекторного. Но при конструировании кристалла всегда добиваются того, чтобы прямой ток эмиттерного перехода практически целиком замыкался через коллекторную цепь, т.е. Iк ≈ Iз.
Для этого необходимо выполнение следующих основных условий:
база транзистора должна быть настолько тонкой, чтобы инжектированные в нее носители могли относительно свободно (не рекомбинируя) достигать коллекторного перехода. У современных приборов толщина базы имеет порядок единиц микрометров;
эмиттерная область в сравнении с областью базы должна иметь большую концентрацию примеси (концентрацию примесей в базе делают на два-три порядка меньше концентрации примесей в эмиттере), чтобы прямой ток эмиттера в основном определялся носителями, инжектируемыми эмиттером в базу;
площадь коллекторного перехода должна быть в несколько раз больше площади эмиттерного перехода (sк>sэ), чтобы инжектированные в базу носители при перемещении в направлении уменьшения своей концентрации попадали преимущественно в область коллекторного перехода. Отношениеsэ /sкобычно составляет 0,15 – 0,5;
чтобы увеличить максимально допустимое напряжение коллектора, которое ограничивается напряжением пробоя коллекторного перехода (Uк.б.max ≈ 0,8Uк.б.проб) в область коллектора обычно вносят несколько меньшую дозу примеси, чем в область эмиттера. Следовательно, для транзистораp-n-p-типа:
nб <<pк<<pз.
В зависимости от технологии изготовления транзистора концентрация примесей в базе может быть распределена равномерно или неравномерно. При равномерном распределении внутреннее электрическое поле отсутствует, и неосновные носители заряда, попавшие в базу, движутся в ней вследствие процесса диффузии. Такие транзисторы называют диффузионнымиили бездрейфовыми.
При неравномерном распределении концентрации примесей в базе имеется внутреннее электрическое поле (при сохранении в целом электронейтральности базы) и неосновные носители заряда движутся в ней в результате дрейфа и диффузии, причем дрейф играет доминирующую роль. Такие транзисторы называют дрейфовыми.
На каждый p-n-переход транзистора может быть подано как прямое, так и обратное напряжение. Соответственно различают четыре режима работы транзистора:
отсечки– на оба перехода подано обратное напряжение;
насыщения– на оба перехода подано прямое напряжение;
активный– на эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное;
инверсный– на эмиттерный переход подано обратное напряжение, а на коллекторный переход – прямое.
Активный режим работы используют для усиления и генерирования сигналов. Режим работы насыщения и режим отсечки используются в ключевых устройствах, в логических устройствах, цифровых интегральных схемах. Инверсный режим используется в специальных схемах.