- •В.М. Руцкий электрические и электронные аппараты
- •3.1. Общие сведения.
- •4.1. Общие сведения.
- •6.1. Общие сведения.
- •Лекция 10. Ограничивающие электрические аппараты.
- •Лекция 11. Контролирующие электрические аппараты.
- •13.1. Общие сведения.
- •Лекция 1. Общие сведения об электрических и электронных аппаратах.
- •1. Классификация электрических и электронных аппаратов.
- •1.1. Классификация электрических и электронных аппаратов.
- •1.2. Общие требования, предъявляемые к электрическим и электронным аппаратам.
- •Лекция 2. Электродинамические силы в электрических аппаратах
- •2.2. Метод расчета электродинамических сил по закону Ампера
- •2.3. Метод расчета электродинамических сил по изменению запаса магнитной энергии токоведущего контура.
- •2.4. Электродинамические силы в наиболее простых случаях.
- •2.5. Электродинамические силы при переменном токе
- •Лекция 3. Нагрев электрических аппаратов
- •3.2. Основные источники теплоты в электрических аппаратах.
- •3.3. Тепловые процессы при различных режимах работы аппаратов.
- •7. Основные источники теплоты в электрических аппаратах.
- •Лекция 4. Электрическая дуга
- •5 .1. Дуга постоянного тока
- •5.2. Условие гашения дуги постоянного тока.
- •5.3. Условие гашения дуги переменного тока.
- •5.4. Способы гашения электрической дуги.
- •15. Условие гашения дуги постоянного тока.
- •16. Условие гашения дуги переменного тока.
- •6.2. Тяговая статическая характеристика электромагнита постоянного тока
- •6.3. Динамика срабатывания электромагнитов постоянного тока
- •6.4. Замедление действия электромагнита при помощи короткозамкнутого витка.
- •6.5. Электромагниты переменного тока.
- •20. Магнитная цепь простейшего электромагнитного механизма.
- •Лекция 6. Контакты электрических аппаратов
- •4. Конструкция контактов
- •4.2. Материалы контактов
- •4.3. Конструкция контактов.
- •Лекция 7. Коммутационные электрические аппараты низкого напряжения
- •7.2. Предохранители
- •7.3. Автоматические выключатели
- •7.4. Быстродействующие автоматические выключатели постоянного тока
- •Лекция 8. Коммутационные электрические аппараты высокого напряжения
- •8.2. Воздушные выключатели
- •8.3. Элегазовые выключатели
- •8.4. Вакуумные выключатели
- •8.2. Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели.
- •Лекция 9. Пускорегулирующие электрические аппараты
- •9.2. Контроллеры
- •9.3. Магнитные пускатели
- •9.4. Реостаты
- •Лекция 10. Ограничивающие электрические аппараты
- •10.2. Принцип действия разрядников
- •10.3. Трубчатые разрядники
- •10.4. Длинно-искровые петлевые разрядники
- •10.6. Вентильные разрядники
- •10.6. Разрядники постоянного тока
- •10.7. Нелинейные ограничители перенапряжений (опн)
- •Лекция 11. Контролирующие электрические аппараты
- •1. Реле.
- •2. Преобразователи (датчики).
- •11.1. Реле
- •11.2. Преобразователи (датчики)
- •1. Резистивные преобразователи .
- •2. Индукционные преобразователи.
- •2.3. Ёмкостные преобразователи.
- •2.4. Пьезоэлектрические преобразователи.
- •2.5. Фотоэлектрические преобразователи.
- •Лекция 12. Электрические аппараты для измерений
- •12.1 Трансформаторы напряжения.
- •12.3. Емкостные делители напряжения.
- •Лекция 13. Бесконтактные электрические аппараты
- •2. Магнитные усилители
- •3. Электронные аппараты
- •4. Гибридные электрические аппараты
- •Лекция 14. Основные тенденции развития электрических аппаратов
- •14.2. Трехпозиционные коммутационные аппараты
- •14.3. Реклоузеры
- •14.4. Мультикамерные разрядники
- •14.5. Оптические трансформаторы тока и напряжения
3. Электронные аппараты
В электронных аппаратах основным элементом, управляющим потоком электрической энергии являются коммутирующие бесконтактные электронные ключи. Функции бесконтактных ключей в настоящее время преимущественно выполняют силовые полупроводниковые приборы.
Силовые полупроводниковые приборы работают в качестве электронных ключей в двух явно выраженных состояниях – включенном, соответствующем высокой проводимости, и выключенном, соответствующем низкой проводимости. Физической основой большинства таких приборов являются полупроводниковые структуры с различными типами электронной проводимости. Управление электронной проводимостью позволяет осуществлять бездуговую коммутацию электрических цепей.
По принципу действия силовые полупроводниковые приборы разделяются на три основных вида: диоды, транзисторы и тиристоры.
По степени управляемости силовые полупроводниковые приборы разделяются на две группы:
не полностью управляемые приборы, которые можно переводить в проводящее состояние, но не наоборот, например, тиристоры (условно к этой группе можно отнести также и диоды, состояние которых определяется полярностью приложенного к ним напряжения);
полностью управляемые приборы, которые можно переводить в проводящее состояние и обратно сигналом управления (например, транзисторы или запираемые тиристоры).
Сигнал управления формируется электронным устройством (формирователем), входящим в состав системы управления (СУ) аппарата, преобразователя или другого устройства, содержащего электронный ключ. Такое устройство именуют оконечным каскадом СУ или формирователем импульсов, а в технической литературе его часто называют драйвером (driver). Основная функция драйвера заключается в формировании сигнала управления, необходимого для включения или выключения ключа при воздействии информационного сигнала малой мощности. Функционально драйвер аналогичен приводу электромеханического коммутационного аппарата.
Полупроводниковые силовые электронные ключи обладают следующими преимуществами по сравнению с коммутационными контактными аппаратами:
отсутствие подвижной механической системы;
бездуговая коммутация цепей, отсутствие электрического износа;
очень высокое быстродействие, возможность плавного управления и регулирования тока;
надёжная работа во взрывоопасных и агрессивных средах;
возможность управления силовыми ключами при помощи маломощных сигналов;
возможность управления сигналами малой величины в коммутируемых цепях;
высокая стойкость к ударным механическим нагрузкам и вибрациям;
отсутствие акустического шума во время работы.
Наряду с неоспоримыми преимуществами, силовым электронным ключам присущи следующие недостатки:
зависимость электрических параметров от температуры, приложенного напряжения, наличия источников проникающей радиации и др.; существенные различия в электрических параметрах ключей одного типа и класса;
невысокая глубина коммутации, т.е. отношение электрического сопротивления ключа в отключенном и включенном состояниях; отсутствие видимого разрыва цепи в выключенном состоянии, наличие остаточного тока, отсутствие гальванической развязки в коммутируемой цепи;
ключи обладают односторонней проводимостью тока и способны работать при напряжении одной полярности, за исключением отдельных интегральных или гибридных приборов, сочетающих качества различных полупроводниковых элементов;
в состоянии высокой проводимости прямое падение напряжения на ключе составляет не менее 0,7-1,5 В (до 3-х В), что обусловлено контактной разностью потенциалов на границе полупроводниковых слоёв; отсюда – существенные потери мощности, преобразующиеся в теплоту и необходимость применения охладителей;
невысокая устойчивость к электрическим перегрузкам; требуются специальные схемотехнические решения по защите ключей от перегрузок по напряжению и току, а также по скорости нарастания тока di/dt и напряжения du/dt;
возможны ложные переключения от случайных импульсов с малой продолжительностью, которые могут проникнуть в цепь управления ключом при близких ударах молний, дуговых разрядах в контактных аппаратах, электросварке и т.д.
Для коммутации силовых цепей переменного тока используются преимущественно тиристоры. Они способны пропускать большие токи при малом падении напряжения, включаются сравнительно просто подачей на управляющий электрод маломощного импульса управления. При этом их основной недостаток – трудность выключения – в цепях переменного тока не играет роли, так как переменный ток обязательно два раза за период проходит через нуль, что обеспечивает автоматическое выключение тиристора.
На рисунке 10.2.а приведена силовая схема тиристорного контактора переменного тока в однополюсном исполнении в составе СУ и однофазного тиристорного ключа.
Импульсы управления формируются из анодных напряжений тиристоров. Если на аноде тиристора VS1 положительная полуволна напряжения, то при замыкании ключа К через диод VD3 и резистор R пройдет импульс тока управления тиристором VS1.В результате тиристор VS1 включится, анодное напряжение упадет почти до нуля, сигнал управления исчезнет, но тиристор останется в проводящем состоянии до конца полупериода, пока анодный ток не пройдет через нуль. В другой полупериод, при противоположной полярности напряжения сети, аналогично включается тиристор VS2. Пока ключ К будет замкнут, тиристоры будут автоматически поочередно включаться, обеспечивая прохождение тока от источника к нагрузке.
В качестве примера
рассмотрим тиристорный контактор
переменного тока с управлением от
анодного напряжения (рис.10.2.б.). Особенность
полупроводниковых коммутационных
устройств состоит в том, что они без
принципиальных изменений в силовой
части могут выполнять различные функции.
Только заменой тиристоров (изменяется
тип, класс по напряжению или группа
прибора по динамическим параметрам)
обеспечивается р
асширение
области применения аппаратов по току
или напряжению.
Рис.10.2. Электронные и гибридные аппараты
Силовой блок контактора выполнен по схеме с встречно-параллельным соединением тиристоров VS1 и VS2. Управление им осуществляется с помощью цепи, состоящей из резисторов R1, R2, R3 и механического контакта S. Эта цепь подключена параллельно тиристорам, поэтому при замкнутом ключе S напряжение на ее элементах, и в частности на резисторах R1 и R3, изменяется синхронно с анодным напряжением на тиристорах. А так как эти резисторы подключены параллельно управляющим цепям тиристоров, то напряжение одной полярности одновременно нарастает и на аноде тиристора, и на его управляющем электроде.
Если это напряжение является положительным, например, по отношению к тиристору VS1, и снимаемое с резистора R1 напряжение превышает значение отпирающего напряжения, тиристор VS1 включается. При изменении полярности напряжения таким же образом происходит включение тиристора VS2.
Диоды VD1 и VD2 в схеме необходимы для защиты управляющих цепей тиристоров от обратного напряжения при отрицательном напряжении на их анодах.
Регулируемый резистор R2 в управляющей цепи выбирается из условия ограничения амплитуды импульса тока управления до допустимого для используемых тиристоров значения.
Изменением сопротивления резистора R2 можно управлять током во входных цепях тиристоров и, следовательно, моментом включения их по отношению к началу полупериода напряжения. В результате контактор становится способным выполнять еще одну функцию – регулирование тока в нагрузке. Предельный угол задержки включения тиристоров amax, который можно обеспечить резисторной управляющей цепью, равен 90°. Сам процесс регулирования тока (напряжения, мощности) в цепи посредством изменения угла задержки включения тиристора a называют фазовым регулированием.
