- •В.М. Руцкий электрические и электронные аппараты
- •3.1. Общие сведения.
- •4.1. Общие сведения.
- •6.1. Общие сведения.
- •Лекция 10. Ограничивающие электрические аппараты.
- •Лекция 11. Контролирующие электрические аппараты.
- •13.1. Общие сведения.
- •Лекция 1. Общие сведения об электрических и электронных аппаратах.
- •1. Классификация электрических и электронных аппаратов.
- •1.1. Классификация электрических и электронных аппаратов.
- •1.2. Общие требования, предъявляемые к электрическим и электронным аппаратам.
- •Лекция 2. Электродинамические силы в электрических аппаратах
- •2.2. Метод расчета электродинамических сил по закону Ампера
- •2.3. Метод расчета электродинамических сил по изменению запаса магнитной энергии токоведущего контура.
- •2.4. Электродинамические силы в наиболее простых случаях.
- •2.5. Электродинамические силы при переменном токе
- •Лекция 3. Нагрев электрических аппаратов
- •3.2. Основные источники теплоты в электрических аппаратах.
- •3.3. Тепловые процессы при различных режимах работы аппаратов.
- •7. Основные источники теплоты в электрических аппаратах.
- •Лекция 4. Электрическая дуга
- •5 .1. Дуга постоянного тока
- •5.2. Условие гашения дуги постоянного тока.
- •5.3. Условие гашения дуги переменного тока.
- •5.4. Способы гашения электрической дуги.
- •15. Условие гашения дуги постоянного тока.
- •16. Условие гашения дуги переменного тока.
- •6.2. Тяговая статическая характеристика электромагнита постоянного тока
- •6.3. Динамика срабатывания электромагнитов постоянного тока
- •6.4. Замедление действия электромагнита при помощи короткозамкнутого витка.
- •6.5. Электромагниты переменного тока.
- •20. Магнитная цепь простейшего электромагнитного механизма.
- •Лекция 6. Контакты электрических аппаратов
- •4. Конструкция контактов
- •4.2. Материалы контактов
- •4.3. Конструкция контактов.
- •Лекция 7. Коммутационные электрические аппараты низкого напряжения
- •7.2. Предохранители
- •7.3. Автоматические выключатели
- •7.4. Быстродействующие автоматические выключатели постоянного тока
- •Лекция 8. Коммутационные электрические аппараты высокого напряжения
- •8.2. Воздушные выключатели
- •8.3. Элегазовые выключатели
- •8.4. Вакуумные выключатели
- •8.2. Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели.
- •Лекция 9. Пускорегулирующие электрические аппараты
- •9.2. Контроллеры
- •9.3. Магнитные пускатели
- •9.4. Реостаты
- •Лекция 10. Ограничивающие электрические аппараты
- •10.2. Принцип действия разрядников
- •10.3. Трубчатые разрядники
- •10.4. Длинно-искровые петлевые разрядники
- •10.6. Вентильные разрядники
- •10.6. Разрядники постоянного тока
- •10.7. Нелинейные ограничители перенапряжений (опн)
- •Лекция 11. Контролирующие электрические аппараты
- •1. Реле.
- •2. Преобразователи (датчики).
- •11.1. Реле
- •11.2. Преобразователи (датчики)
- •1. Резистивные преобразователи .
- •2. Индукционные преобразователи.
- •2.3. Ёмкостные преобразователи.
- •2.4. Пьезоэлектрические преобразователи.
- •2.5. Фотоэлектрические преобразователи.
- •Лекция 12. Электрические аппараты для измерений
- •12.1 Трансформаторы напряжения.
- •12.3. Емкостные делители напряжения.
- •Лекция 13. Бесконтактные электрические аппараты
- •2. Магнитные усилители
- •3. Электронные аппараты
- •4. Гибридные электрические аппараты
- •Лекция 14. Основные тенденции развития электрических аппаратов
- •14.2. Трехпозиционные коммутационные аппараты
- •14.3. Реклоузеры
- •14.4. Мультикамерные разрядники
- •14.5. Оптические трансформаторы тока и напряжения
Лекция 12. Электрические аппараты для измерений
План лекции:
1 Трансформаторы тока.
2.Трансформаторы напряжения.
3. Емкостные делители напряжения.
12.1 Трансформаторы тока.
Трансформатор тока предназначен для понижения первичного тока до стандартной величины 5 А или 1 А и для отделения цепей измерения и защиты от первичных цепей высокого напряжения.
Трансформатор тока (рис.12.1.а) имеет замкнутый магнитопровод 2 и две обмотки: первичную 1 и вторичную 3.
Первичная обмотка включается последовательно в цепь измеряемого тока I1, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током I2.
Трансформатор тока характеризуется номинальным коэффициентом трансформации:
(12.1)
где I1ном, I2ном — номинальные значения первичного и вторичного токов соответственно.
Действительный коэффициент трансформации отличается от номинального вследствие потерь в трансформаторе, которые создают погрешность в измерении тока:
(12.2)
Погрешность трансформатора тока зависит от его конструктивных особенностей; сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1*W1. В зависимости от предъявляемых требований, выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10. Указанные цифры представляют собой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100 - 120% для первых трех классов и 50-120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.
Р
ис.12.1.
Трансформаторы тока
Погрешность трансформатора тока зависит от вторичной нагрузки (сопротивление приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности. При первичных токах, значительно меньших номинального, погрешность трансформатора тока также возрастает
Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 - для присоединения счетчиков денежного расчета, класса 1 — для всех технических измерительных приборов, классов 3 и 10 — для релейной защиты.
Кроме рассмотренных классов выпускаются также трансформаторы тока со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).
Различают одновитковые и многовитковые трансформаторы тока. В одновитковом трансформаторе тока первичная обмотка может быть выполнена в виде стержня, шины или пакета шин.
Токовые цепи измерительных приборов и реле имеют малое сопротивление, поэтому трансформатор тока нормально работает в режиме, близком к режиму КЗ. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке появится высокое напряжение, достигающее в некоторых случаях десятков киловольт.
Из-за указанных явлений не разрешается размыкать вторичную обмотку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шунтируется обмотка реле, прибора).
Трансформаторы тока для внутренних установок имеют сухую изоляцию с использованием фарфора или эпоксидной смолы.
Устройство трансформатора тока с использованием фарфора приведено на рис. 12.1.б. Первичная обмотка трансформатора тока, представляющая собой стержень, шину или катушку, проходит внутри фарфорового изолятора 4, на который надеты кольцевые сердечники 3, 5 (один или два). Сердечники изготовляют из спиральной стальной ленты, свернутой в виде кольца. На каждый сердечник намотана вторичная обмотка 2 из медного изолированного провода. Трансформаторы тока имеют однофазное исполнении. В РУ применяют трансформаторы тока классов точности 0,5; 1;3.
Трансформаторы с литой эпоксидной изоляцией имеют малые размеры и проще по технологии производства, поэтому получили широкое распространение. На рис. 12.1.в показано устройство трансформатора тока типа ТПОЛ-10 — (П — проходной, О — одновитковый, Л — с литой изоляцией) на номинальное напряжение 10 кВ. Первичная обмотка 1 выполнена в виде прямолинейного стержня с зажимами на концах. На стержень поверх изоляции надеты два кольцевых магнитопровода 2 с вторичными обмотками. Магнитопроводы вместе с первичной и вторичной обмотками залиты эпоксидным компаундом и образуют монолитный блок 3 в виде проходного изолятора. Блок снабжен фланцем 4 из силумина с отверстиями под болты для крепления трансформатора. Зажимы 5 вторичных обмоток расположены на боковом приливе блока.
Одновитковые трансформаторы тока могут быть встроенными. В этом случае используются токоведущий стержень и изолятор другого аппарата или оборудования (выключателя, силового трансформатора, проходного изолятора и др.). На рис. 12.1г приведена установка трансформатора тока на высоковольтном вводе.
При напряжении 35 кВ и выше для открытых установок применяются трансформаторы тока с масляной изоляцией. Наиболее распространены трансформаторы тока так называемого звеньевого типа (рис. 12.д). Кольцевой магнитопровод 3 выполнен из ленточной стали. На нем навиты вторичные обмотки, изолированные вместе с сердечником кабельной бумагой 2, пропитанной маслом и покрывающей как вторичную так первичную обмотку 1. Обмотки помещены в фарфоровой корпус 3, заполненный маслом 4.
В установках 500 кВ и выше применяются каскадные трансформаторы тока типа ТФНК, в которых используется двухступенчатая трансформация для облегчения изоляции.
