- •В.М. Руцкий электрические и электронные аппараты
- •3.1. Общие сведения.
- •4.1. Общие сведения.
- •6.1. Общие сведения.
- •Лекция 10. Ограничивающие электрические аппараты.
- •Лекция 11. Контролирующие электрические аппараты.
- •13.1. Общие сведения.
- •Лекция 1. Общие сведения об электрических и электронных аппаратах.
- •1. Классификация электрических и электронных аппаратов.
- •1.1. Классификация электрических и электронных аппаратов.
- •1.2. Общие требования, предъявляемые к электрическим и электронным аппаратам.
- •Лекция 2. Электродинамические силы в электрических аппаратах
- •2.2. Метод расчета электродинамических сил по закону Ампера
- •2.3. Метод расчета электродинамических сил по изменению запаса магнитной энергии токоведущего контура.
- •2.4. Электродинамические силы в наиболее простых случаях.
- •2.5. Электродинамические силы при переменном токе
- •Лекция 3. Нагрев электрических аппаратов
- •3.2. Основные источники теплоты в электрических аппаратах.
- •3.3. Тепловые процессы при различных режимах работы аппаратов.
- •7. Основные источники теплоты в электрических аппаратах.
- •Лекция 4. Электрическая дуга
- •5 .1. Дуга постоянного тока
- •5.2. Условие гашения дуги постоянного тока.
- •5.3. Условие гашения дуги переменного тока.
- •5.4. Способы гашения электрической дуги.
- •15. Условие гашения дуги постоянного тока.
- •16. Условие гашения дуги переменного тока.
- •6.2. Тяговая статическая характеристика электромагнита постоянного тока
- •6.3. Динамика срабатывания электромагнитов постоянного тока
- •6.4. Замедление действия электромагнита при помощи короткозамкнутого витка.
- •6.5. Электромагниты переменного тока.
- •20. Магнитная цепь простейшего электромагнитного механизма.
- •Лекция 6. Контакты электрических аппаратов
- •4. Конструкция контактов
- •4.2. Материалы контактов
- •4.3. Конструкция контактов.
- •Лекция 7. Коммутационные электрические аппараты низкого напряжения
- •7.2. Предохранители
- •7.3. Автоматические выключатели
- •7.4. Быстродействующие автоматические выключатели постоянного тока
- •Лекция 8. Коммутационные электрические аппараты высокого напряжения
- •8.2. Воздушные выключатели
- •8.3. Элегазовые выключатели
- •8.4. Вакуумные выключатели
- •8.2. Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели.
- •Лекция 9. Пускорегулирующие электрические аппараты
- •9.2. Контроллеры
- •9.3. Магнитные пускатели
- •9.4. Реостаты
- •Лекция 10. Ограничивающие электрические аппараты
- •10.2. Принцип действия разрядников
- •10.3. Трубчатые разрядники
- •10.4. Длинно-искровые петлевые разрядники
- •10.6. Вентильные разрядники
- •10.6. Разрядники постоянного тока
- •10.7. Нелинейные ограничители перенапряжений (опн)
- •Лекция 11. Контролирующие электрические аппараты
- •1. Реле.
- •2. Преобразователи (датчики).
- •11.1. Реле
- •11.2. Преобразователи (датчики)
- •1. Резистивные преобразователи .
- •2. Индукционные преобразователи.
- •2.3. Ёмкостные преобразователи.
- •2.4. Пьезоэлектрические преобразователи.
- •2.5. Фотоэлектрические преобразователи.
- •Лекция 12. Электрические аппараты для измерений
- •12.1 Трансформаторы напряжения.
- •12.3. Емкостные делители напряжения.
- •Лекция 13. Бесконтактные электрические аппараты
- •2. Магнитные усилители
- •3. Электронные аппараты
- •4. Гибридные электрические аппараты
- •Лекция 14. Основные тенденции развития электрических аппаратов
- •14.2. Трехпозиционные коммутационные аппараты
- •14.3. Реклоузеры
- •14.4. Мультикамерные разрядники
- •14.5. Оптические трансформаторы тока и напряжения
10.6. Вентильные разрядники
Вентильные разрядники (РВ) являются другой разновидностью искровых промежутков, отличающихся слабой неоднородностью электрического поля и нелинейным резистором для гашения дуги (рис.10.2.г).
При воздействии на РВ импульса грозового перенапряжения пробивается многократный искровой промежуток 1, расположенный в кожухе 2, и через РВ проходит импульсный ток, который создает падение напряжения на нелинейном сопротивлении разрядника 3. Благодаря нелинейности ВАХ материала, из которого выполнено сопротивление РВ, падение напряжения мало меняется при существенном изменении импульсного тока. Одной из основных характеристик разрядника является остающееся напряжение разрядника т.е. напряжение при определенном токе, который называется током координации. После окончания процесса ограничения перенапряжения через разрядник продолжает проходить ток, определяемый рабочим напряжением промышленной частоты. Этот ток называется сопровождающим током. Сопротивление нелинейного резистора резко возрастает при малых по сравнению с перенапряжениями рабочих напряжениях, сопровождающий ток существенно ограничивается и при переходе тока через нулевое значение дуга в искровом промежутке гаснет. Второй характеристикой РВ является напряжение гашения – это наибольшее напряжение промышленной частоты на РВ, при котором надежно обрывается проходящий через него ток.
10.6. Разрядники постоянного тока
Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20—30 В. Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов.
На рис.10.2.д приведена конструкция искрового промежутка с вращающейся дугой и устройство разрядника постоянного тока типа РМВУ-3,3. Искровой промежуток с вращающейся дугой состоит из двух медных электродов (диска 1 и кольца 2), расположенных между кольцевыми постоянными магнитами 3. Пробой промежутка происходит в самом узком месте, а затем дуга под действием магнитного поля начинает вращаться, хорошо охлаждается и гаснет. Такой промежуток способен погасить ток до 250 А.
Рабочий резистор состоит из двух вилитовых дисков 1, соединенных с двумя искровыми промежутками 2, расположенных между постоянных магнитов 3. Надежное контактирование промежутков и дисков достигается с помощью пружины 4, одновременно являющейся токоподводящим элементом.
10.7. Нелинейные ограничители перенапряжений (опн)
Основным недостатком вентильного разрядника является сравнительно невысокая нелинейность резисторов на основе карбида кремния, что не позволяет обеспечить уровень перенапряжений ниже 2Uф. Более глубокое их снижение требует уменьшения значения нелинейного сопротивления, что приводит к существенному увеличению сопровождающих токов, которые не могут быть погашены в искровых промежутках.
Значительное улучшение защитных характеристик разрядников может быть достигнуто при отказе от использования искровых промежутков. Это оказывается возможным при переходе к резисторам на основе окиси цинка.
При рабочем напряжении сопротивление ОПН очень велико и ток через него составляет доли миллиампера, а при токах соответствующих атмосферным и коммутационным перенапряжениям сопротивление резко снижается и остающиеся напряжение не превышает допустимых значений.
Вопросы для самопроверки:
Назначение токоограничивающего реактора?
В чём преимущество масляных реакторов над воздушными?
Принцип действия разрядников?
Вопросы к экзамену:
38. Принцип действия и устройство воздушного токоограничивающего реактора?
49. Устройство и принцип действия трубчатого разрядника?
40. Устройство и принцип действия вентильного разрядника?
41. Устройство и принцип действия длинно-искрового петлевого разрядника?
42. Устройство и принцип действия разрядника постоянного тока?
