- •В.М. Руцкий электрические и электронные аппараты
- •3.1. Общие сведения.
- •4.1. Общие сведения.
- •6.1. Общие сведения.
- •Лекция 10. Ограничивающие электрические аппараты.
- •Лекция 11. Контролирующие электрические аппараты.
- •13.1. Общие сведения.
- •Лекция 1. Общие сведения об электрических и электронных аппаратах.
- •1. Классификация электрических и электронных аппаратов.
- •1.1. Классификация электрических и электронных аппаратов.
- •1.2. Общие требования, предъявляемые к электрическим и электронным аппаратам.
- •Лекция 2. Электродинамические силы в электрических аппаратах
- •2.2. Метод расчета электродинамических сил по закону Ампера
- •2.3. Метод расчета электродинамических сил по изменению запаса магнитной энергии токоведущего контура.
- •2.4. Электродинамические силы в наиболее простых случаях.
- •2.5. Электродинамические силы при переменном токе
- •Лекция 3. Нагрев электрических аппаратов
- •3.2. Основные источники теплоты в электрических аппаратах.
- •3.3. Тепловые процессы при различных режимах работы аппаратов.
- •7. Основные источники теплоты в электрических аппаратах.
- •Лекция 4. Электрическая дуга
- •5 .1. Дуга постоянного тока
- •5.2. Условие гашения дуги постоянного тока.
- •5.3. Условие гашения дуги переменного тока.
- •5.4. Способы гашения электрической дуги.
- •15. Условие гашения дуги постоянного тока.
- •16. Условие гашения дуги переменного тока.
- •6.2. Тяговая статическая характеристика электромагнита постоянного тока
- •6.3. Динамика срабатывания электромагнитов постоянного тока
- •6.4. Замедление действия электромагнита при помощи короткозамкнутого витка.
- •6.5. Электромагниты переменного тока.
- •20. Магнитная цепь простейшего электромагнитного механизма.
- •Лекция 6. Контакты электрических аппаратов
- •4. Конструкция контактов
- •4.2. Материалы контактов
- •4.3. Конструкция контактов.
- •Лекция 7. Коммутационные электрические аппараты низкого напряжения
- •7.2. Предохранители
- •7.3. Автоматические выключатели
- •7.4. Быстродействующие автоматические выключатели постоянного тока
- •Лекция 8. Коммутационные электрические аппараты высокого напряжения
- •8.2. Воздушные выключатели
- •8.3. Элегазовые выключатели
- •8.4. Вакуумные выключатели
- •8.2. Выключатели нагрузки. Разъединители. Отделители. Короткозамыкатели.
- •Лекция 9. Пускорегулирующие электрические аппараты
- •9.2. Контроллеры
- •9.3. Магнитные пускатели
- •9.4. Реостаты
- •Лекция 10. Ограничивающие электрические аппараты
- •10.2. Принцип действия разрядников
- •10.3. Трубчатые разрядники
- •10.4. Длинно-искровые петлевые разрядники
- •10.6. Вентильные разрядники
- •10.6. Разрядники постоянного тока
- •10.7. Нелинейные ограничители перенапряжений (опн)
- •Лекция 11. Контролирующие электрические аппараты
- •1. Реле.
- •2. Преобразователи (датчики).
- •11.1. Реле
- •11.2. Преобразователи (датчики)
- •1. Резистивные преобразователи .
- •2. Индукционные преобразователи.
- •2.3. Ёмкостные преобразователи.
- •2.4. Пьезоэлектрические преобразователи.
- •2.5. Фотоэлектрические преобразователи.
- •Лекция 12. Электрические аппараты для измерений
- •12.1 Трансформаторы напряжения.
- •12.3. Емкостные делители напряжения.
- •Лекция 13. Бесконтактные электрические аппараты
- •2. Магнитные усилители
- •3. Электронные аппараты
- •4. Гибридные электрические аппараты
- •Лекция 14. Основные тенденции развития электрических аппаратов
- •14.2. Трехпозиционные коммутационные аппараты
- •14.3. Реклоузеры
- •14.4. Мультикамерные разрядники
- •14.5. Оптические трансформаторы тока и напряжения
7.3. Автоматические выключатели
Автоматические выключатели предназначены для коммутации цепей при токах КЗ и перегрузке, а также для редких включений и отключений цепей в нормальном режиме.
В установках до 1 кВ применяются разнообразные по конструкции и назначению автоматические выключатели. Наиболее широкое применение получили автоматические выключатели серий ABM, AM, А-3700, Э.
Принципиальная схема автоматического выключателя приведена на рис. 7.2.а
Рис.7.2. Низковольтные выключатели
Во всех автоматических выключателях имеются дугогасительные 1 и главные 2 контакты. Главные контакты (медь, серебро) имеют малое переходное сопротивление и могут длительно пропускать большие номинальные токи. Параллельно главным включены дугогасительные контакты, выполненные из металлокерамики.
Отключающий импульс по механической связи 6 воздействует на рычаги 5 механизма свободного расщепления, «ломает» их по шарнирному соединению О2, и контактный рычаг 3 под действием отключающей пружины 4 поворачивается против часовой стрелки. При этом отключаются сначала главные, а затем дугогасительные контакты. Возникшая дуга под действием электродинамических сил втягивается в дугогасительную камеру с деионной решеткой из металлических пластин 9, где разделяется на ряд коротких дуг и гаснет. Включение выключателя осуществляется рукояткой 7 или электромагнитным приводом 8.
В зависимости от типа автоматического выключателя отключающий импульс может создаваться электромагнитным расцепителем, реагирующим на токи КЗ, тепловым расцепителем, реагирующим на перегрузку, расцепителем, реагирующим на снижение напряжения. Возможно дистанционное отключение от независимого расцепителя.
7.4. Быстродействующие автоматические выключатели постоянного тока
Для коммутации электрических цепей в нагрузочных и аварийных режимах в системах тягового электроснабжения постоянного тока применяются быстродействующие автоматические выключатели. Собственное время отключения таких выключателей составляет 0,004 ... 0,006 с, что на один-два порядка ниже, чем у высоковольтных выключателей переменного тока. Использование быстродействующих выключателей позволяет осуществить гашение дуги в выключателе до достижения токов короткого замыкания установившегося значения, что облегчает процесс гашения дуги постоянного тока и способствует устойчивой и более надежной работе оборудования подстанций особенно вентилей выпрямительных установок.
Быстродействие выключателя обеспечивается особой его конструкцией. Наибольшее распространение получили выключатели, в которых быстродействие достигнуто исключением механизма свободного расцепления и запирающей защелки.
Подвижная часть выключателя удерживается в положении «включено» электромагнитом. Последний снабжен дополнительной обмоткой, включенной последовательно в цепь главного тока, с помощью которой подвижная часть выключателя освобождается при резком увеличении тока или при изменении его направления. Собственное время отключения быстродействующих выключателей составляет 1—5 мс. Полное время отключения (включая время дуги) обычно не превышает 15— 30 мс.
В качестве примера на рис. 7.2.в приведена принципиальная схема быстродействующего выключателя с удерживающим электромагнитом. Этот электромагнит 1 имеет две обмотки. Основная или удерживающая обмотка 2 с большим числом витков присоединена к сети постоянного тока 110—220 В. Последовательная обмотка 3 с одним витком помещена на небольшом сердечнике и обтекается током защищаемой цепи. В положении «включено» якорь 4, укрепленный на контактном рычаге 5, притянут к полюсам электромагнита. Отключающая пружина 6 натянута.
Магнитодвижущая сила (м. д. с.) последовательной обмотки уменьшает магнитный поток в якоре и полюсах, однако при нормальной работе, когда ток относительно невелик, результирующая м. д. с. достаточна для удержания якоря. При нарушении нормального режима, когда ток в защищаемой цепи превысит ток срабатывания, м. д. с. последовательной обмотки резко увеличивается и смещает магнитный поток из якоря в сердечник с обмоткой 3.
Контактный рычаг под действием пружины отрывается от полюсов и контакты выключателя 7 размыкаются. Дуга, образующаяся на контактах, затягивается магнитным полем электромагнита 8 в камеру. При этом концы дуги перемещаются по направляющим, дуга растягивается, сопротивление ее увеличивается и ток форсируется к нулю. Размагничивающее действие последовательной обмотки при К. З. усиливают с помощью магнитного шунта 9, включенного параллельно обмотке. Шунт имеет относительно малое активное сопротивление, поэтому большая часть тока при нормальной работе замыкается по нему. При К. З. ток быстро увеличивается и вследствие большой индуктивности шунта смещается из него в последовательную обмотку, вызывая размыкание контактов выключателя. Электромагнит 10 служит для включения выключателя.
При рассмотренном включении удерживающей и последовательной обмоток выключатель реагирует на увеличение тока в прямом направлении. При изменении направления тока в цепи выключатель не отключится, поскольку в этом случае м. д. с. последовательной обмотки усиливает магнитный поток в якоре, создаваемый удерживающей обмоткой. Однако для защиты генераторов, преобразователей необходимы выключатели, реагирующие на изменение направления тока в цепи. Для этого достаточно изменить направление включения удерживающей обмотки на обратное. Тогда при увеличении тока в прямом направлении выключатель останется включенным. При изменении же направления тока магнитный поток сместится из якоря в параллельную ветвь и выключатель разомкнет цепь. Таким образом, рассмотренный выключатель является поляризованным, поскольку он реагирует на изменение тока только в одном направлении.
Гасительная камера выключателя постоянного тока должна обеспечивать достаточно большое и по возможности постоянное напряжение дуги. Последнее должно превышать напряжение сети. Восстанавливающаяся электрическая прочность дугового промежутка после погасания дуги имеет меньшее значение, поскольку напряжение на полюсе выключателя после того, как ток снизился до нуля, не превышает напряжения сети. Эти требования коренным образом отличаются от требований, предъявляемых к гасительным устройствам выключателей переменного тока. Последние неэффективны в цепях постоянного тока.
Вопросы для самопроверки:
Для чего предназначены рубильники?
Дайте определение времятоковой характеристики электрического аппарата?
Для чего предназначены автоматические выключатели?
Почему при постоянном токе применяются быстродействующие выключатели?
Вопросы к экзамену:
26. Устройство и принцип действия низковольтных предохранителей?
27. Устройство и принцип действия автоматических выключателей?
28. Устройство и принцип действия быстродействующих выключателей постоянного тока?
