
- •Предисловие
- •1. Основные понятия
- •Что такое «Сопротивление материалов»?
- •Каким образом твердое тело способно сопротивляться разрушению под действием приложенных к нему нагрузок?
- •Легко представить себе как груз растягивает, например, веревку. Но, каким образом веревка может создать необходимую для противодействия грузу внутреннюю силу?
- •Какая деформация называется упругой?
- •Какая деформация называется пластической?
- •Какие основные задачи решаются в сопротивлении материалов?
- •Как классифицируются внешние силы?
- •Какие основные допущения принимаются в сопротивлении материалов?
- •Что называется расчетной схемой?
- •В чем заключается суть метода сечений и для чего он применяется?
- •Что называется напряжением в точке тела на данной площадке? в каких единицах оно измеряется?
- •По какому правилу осуществляется вычисление продольной силы n в произвольном поперечном сечении стержня?
- •В чем заключается смысл гипотезы плоских сечений?
- •Как распределены нормальные напряжения по поперечному сечению стержня? По какой формуле они вычисляются?
- •О чем говорит принцип Сен-Венана?
- •Что происходит с продольным и поперечными размерами стержня при растяжении (сжатии)? Связана ли поперечная деформация с продольной деформацией стержня?
- •Как записывается закон Гука при растяжении (сжатии)?
- •Что характеризует модуль продольной упругости? в каких единицах он измеряется?
- •Как вычисляется абсолютное удлинение стержня?
- •Какие напряжения возникают в наклонных сечениях стержня, то есть в сечениях, которые не являются поперечными?
- •Как проводится испытание материала на растяжение?
- •Для всех ли материалов диаграмма растяжения имеет вид, показанный на рис. 2.4?
- •В учебниках по сопротивлению материалов встречаются два понятия: «предел прочности» и «временное сопротивление разрыву». Тождественны ли они?
- •Как ведут себя материалы при испытании на сжатие?
- •Какое напряжение называется допускаемым? Как производится расчет на прочность при растяжении и сжатии?
- •А что делать, когда расчетное напряжение незначительно, но все же превышает допускаемое напряжение?
- •Какие системы называются статически неопределимыми?
- •Возникают ли в стержне напряжения при его нагреве или охлаждении?
- •3. Сдвиг
- •Что такое сдвиг? Какие внутренние усилия возникают в поперечных сечениях стержня при сдвиге?
- •Что называется абсолютным сдвигом и углом сдвига (относительным сдвигом)?
- •Какие напряжения возникают в поперечных сечениях стержня при сдвиге?
- •Как записывается закон Гука при сдвиге? Что называется модулем сдвига, в каких единицах он измеряется?
- •Какая зависимость существует между модулем сдвига и модулем Юнга?
- •Как выглядит диаграмма –при сдвиге?
- •Чему равна потенциальная энергия деформации при сдвиге?
- •Как записывается условие прочности при сдвиге?
- •Что такое срез, и как правильнее говорить «расчет на сдвиг» или же «расчет на срез»?
- •4. Геометрические характеристики плоских сечений
- •Что называется статическим моментом площади сечения относительно оси?
- •Как определить координаты центра тяжести поперечного сечения стержня?
- •Что называется осевым, полярным и центробежным моментами инерции фигуры? в каких единицах они измеряются?
- •Какие оси называются главными осями?
- •Какие моменты инерции называются собственными?
- •По какой формуле вычисляются моменты инерции фигуры относительно оси, параллельной центральной? Какие моменты инерции называются переносными?
- •Как изменяются собственные моменты инерции при повороте координатных осей?
- •Какие собственные осевые моменты инерции называются главными моментами инерции?
- •Как для сложной фигуры определить, какая из главных центральных осей является осью max, то есть той осью, относительно которой момент инерции принимает наибольшее значение ?
- •Чему равны главные моменты инерции простейших фигур: прямоугольника и круга?
- •Что называется радиусом инерции?
- •И все же, зачем нам нужно знать положение главных центральных осей, а также значения главных центральных моментов инерции поперечного сечения стержня?
Какие основные допущения принимаются в сопротивлении материалов?
При построении теории расчета на прочность, жесткость и устойчивость принимаются допущения, относящиеся к свойствам материалов, а также допущения, связанные с деформацией тела.
К первой группе допущений относятся следующие:
материал тела представляет собой сплошную среду, то есть полагают, что материал полностью заполняет весь объем тела, без каких-либо пустот (представление о теле, как о сплошной среде, дает возможность применять при исследовании его напряженно-деформированного состояния методы дифференциального и интегрального исчислений, которые требуют непрерывности функции в каждой точке объема тела);
материал считается однородным, то есть его физико-механические свойства считаются одинаковыми во всех точках;
материал считается изотропным, то есть его физико-механические свойства в каждой точке тела одинаковы во всех направлениях (материалы, не обладающие этим свойством, называются анизотропными, например, дерево);
полагают, что материал является идеально упругим, то есть после снятия нагрузки его деформация полностью исчезает.
Теперь рассмотрим вторую группу допущений, связанных с деформацией тела.
Деформации считаются малыми.
Отсюда следует, что при составлении уравнений равновесия, а также при определении внутренних сил можно не учитывать деформацию тела. Это допущение иногда называют принципом начальных размеров.
Р
А
Момент
в жесткой заделке, определенный из
соответствующего уравнения равновесия
методомтеоретической
механики,
равен:
.
Однако прямолинейное положение стержня не является его положением равновесия. Под действием силы P стержень изогнется, и точка приложения нагрузки сместится и по вертикали, и по горизонтали.
Если записать уравнение равновесия стержня для деформированного (изогнутого) состояния, то истинный момент, возникающий в заделке, окажется равным:
.
Принимая
допущение о
малости деформаций,
мы полагаем, что перемещением w
можно пренебречь по сравнению с длиной
стержня l,
то есть
,
тогда
.
Однако, очевидно, что не всегда это допущение справедливо.
Полагают, что перемещения точек тела пропорциональны внешним нагрузкам, вызывающим эти перемещения, то есть считается, что тело является линейно деформируемым.
Необходимо отметить, что допущение о линейной деформируемости конструкции нельзя отождествляется с законом Гука, как это делается, к сожалению, в некоторых учебниках по сопротивлению материалов. Дело в том, что закон Гука, о котором мы будем говорить подробнее в следующей беседе, устанавливает линейную зависимость между внутренними силами и деформациями, а не внешними силами и перемещениями.
Для линейно деформируемых конструкций справедлив принцип независимости действия сил (принцип суперпозиции):
Результат действия группы сил не зависит от последовательности нагружения ими конструкции и равен сумме результатов действия каждой из этих сил в отдельности.
В основе этого принципа лежит также предположение об обратимости процессов нагрузки и разгрузки конструкции.