- •1. Тондық жиілік арналарының параметрлері және жолдары және олардың құрылғылары
- •1.1. Арна немесе жолдың кіріс және шығыс параметрлері
- •1.2. Қалған өшулердің параметрлері мен сипаттамалары
- •1.3. Арналардың және жолдардың фазалық сипаттамалары
- •2. Трансмиссия жүйесінде өлшеу түрлері
- •2.1. Трансмиссия жүйесінде өлшеудің жіктелуі
- •2.2. Настроечные измерения
- •2.3. Контрольные измерения
- •2.4. Организация измерений с закрытием и без закрытия связей
- •3. Измерение помехозащищенности канала тч
- •4. Измерение уровней напряжения
- •4.1. Классификация и принцип построения измерителей уровня
- •4.2. Типы выпускаемых иу и особенности их применения
- •4.3. Влияние соединительных шнуров на погрешность измерения уровня
- •4.4. Технические требования, предъявляемые к иу
- •5. Измерение шумов в каналах и трактах
- •6. Измерение коэффициента ошибок
- •6.1. Определения коэффициента ошибок
- •6.2. Математическое выражение коэффициента битовых ошибок
- •6.3. Нормы на параметры ошибок систем передачи
- •6.4. Принципы построения измерителей ошибок
- •6.5. Техника измерения коэффициента ошибок
- •7. Методы и средства измерения фазового дрожания
- •7.1. Понятия джиттера, его классификация и влияние на параметры канала
- •7.2. Причины возникновения джиттера
- •7.3. Виды измерений фазового дрожания (джиттера) и их необходимость
- •7.4. Нормы на фазовые дрожания
- •7.5. Методы измерения фазового дрожания
- •7.6. Техника измерения и тестирования фазового дрожания
- •7.6.1. Измерение выходного фазового дрожания
- •7.6.2. Измерение преобразования фазового дрожания
- •7.6.3. Измерение допустимого фазового дрожания
- •8. Измерение отношения сигнал/шум квантования
- •9. Классификация и технологии измерений в волоконно-оптических системах передачи
- •9.1. Основные понятия и определения
- •9.2. Виды измерений в волоконно-оптических системах передачи
- •9.3. Основные виды и характеристики контроля в волоконно-оптических системах передачи
- •10. Измерения параметров волоконно-оптических линий передачи
- •10.1. Назначение и виды измерений в волоконно-оптических линиях передачи
- •10.2. Методы и средства измерения затухания
- •10.2.1. Метод двух точек
- •10.2.2. Метод обрыва
- •10.2.3. Метод вносимых потерь
- •10.2.4. Измерение приращения затухания при воздействии внешних факторов
- •10.2.5. Измерение переходного затухания
- •10.2.6. Метод обратного рассеяния
- •10.2.7. Приборы для измерения затуханий в оптических кабелях
- •10.3. Методы и средства измерения полосы пропускания и дисперсии оптических волокон
- •10.3.1. Измерение межмодовой дисперсии
- •10.3.2. Измерение хроматической дисперсии
- •10.3.3. Измерение поляризационной модовой дисперсии
- •12. Измерение параметров и характеристик фотоприемных устройств
- •12.1. Основные определения измеряемых параметров и характеристик
- •12.2. Измерения электрических параметров
- •12.2.1. Измерения темнового тока и сопротивления
- •12.2.2. Измерение емкости фотоприемных устройств
- •12.2.3. Измерение чувствительности фотоприемных устройств
- •12.2.3.1. Измерение относительной спектральной чувствительности
- •12.2.3.2. Определение интегральной чувствительности
- •12.3. Определение частотных и временных характеристик фотоприёмных устройств
- •12.4. Измерение шумов
- •13. Задачи и структура метрологической службы отрасли
- •14. Задачи метрологического обеспечения измерений параметров восп
- •15. Правила разработки и использования в отрасли методик выполнения измерений
- •16. Порядок сертификации сиэ в отрасли «связь»
- •17. Технические основы метрологического обеспечения
6.4. Принципы построения измерителей ошибок
В зависимости от скорости передачи контролируемой системы передачи в анализаторе используются различные схемотехнические решения.
Рисунок 6.3. Генератор низкоскоростного BER анализатора
Низкоскоростной генератор тестовых кодов и детектор ошибок. Используемый в телекоммуникациях анализатор BER, состоящий [106] из генератора тестовых кодов и собственно анализатора ошибок, представлен на рисунках 6.3 и 6.4. Он предназначен для невысоких (до 200 Мбит/с) битовых скоростей, учитывая, что максимальные типовые скорости составляют 44.736 Мбит/с (DS3) в Северной Америке и 139.364 Мбит/с – за пределами Северной Америки.
PRBS с генератором кодовых групп, представленный на рис. 6.16, синхронизируется либо от источника тактового сигнала с фиксированной частотой (согласно G.703), либо от синтезатора, осуществляя тем самым изменение частоты синхронизации. В связи с этим использование данных средств требует задания некоторых определенных частот синхронизации и наличия возможности обеспечения их небольших смещений от ±15 до ±50 ppm. Для повторения тестовых кодов схема PRBS и генератор кодовых групп обычно имеют триггерную схему, управляющую либо выходным усилителем бинарных данных, который обеспечивает данные и данные с сопровождающим синхросигналом, либо выходную схему кодированных данных. Это позволяет создавать цикловую синхронизацию сигнала в соответствии с требованием, например, системы SONET/SDH. Кроме этого, данная схема способствует созданию соответствующего интерфейсного кода для эффективного восстановления тактовой синхронизации. Выходной усилитель обеспечивает необходимый уровень сигнала в соответствии со спецификацией электрического интерфейса, в том числе сигнала с чередованием полярности импульсов.
Рисунок 6.4. Низкоскоростной детектор ошибок
Детектор ошибок, показанный на рисунке 6.4, получает стандартный кодированный сигнал, восстанавливает генератор синхросигнала и устраняет кодирование для обеспечения бинарной даты и синхросигналов. Он обнаруживает любые нарушения алгоритма интерфейсного кода и посылает сигналы на счетчик ошибок, что составляет первый уровень процесса обнаружения ошибок. При работе с цикловыми сигналами приемник захватывает любой присутствующий элемент цикловой синхронизации, проверяет наличие цикловых ошибок и декодирует любые встроенные сигналы тревоги, или CRC биты, тем самым обеспечивая возможность измерения.
Наконец, бинарные данные и синхросигнал направляются на детектор ошибок и генератор эталонных тестовых кодов, которые проверяют полученный тестовый код бит за битом на предмет обнаружения логических ошибок. Временная база контролирует пропускание измерения для непрерывного, периодического и ручного режима. Накопленное количество ошибок обрабатывается для получения значения BER и анализа функционирования при наличии ошибок.
Высокоскоростной генератор тестовых кодов и детектор ошибок. На рисунках 6.5 и 6.6 показаны схемы [14] для 3 Гбит/с генератора тестовых кодов и детектора ошибок. Вследствие высокой битовой скорости генерация последовательных PRBS и кодовых групп на этой скорости не представляется целесообразной. Поэтому тестовые коды генерируются (рисунок 6.5) как параллельные 16-битные кодовые группы при максимальной скорости 200 Мбит/с, используя затем выполненные по биполярной технологии регистраторы смещения и высокоемкостную память. Высокоскоростные схемы обычно выполняются на основе арсенид-галлиевых логических схем, преобразующих параллельные данные в последовательный поток на скорости до 3 Гбит/с.
Согласно данной схеме, вход синхросигнала генерируется синтезатором частоты, согласующее устройство управляется через линию фиксированной задержки, а генератор тестовых кодов и выходной усилитель синхронизируются через схему дискретной и плавно изменяемой задержки, так что фаза синхросигнала/данных может изменяться как в положительном направлении, так и в отрицательном. Дискретные значения задержки составляют 250, 500 и 1000 пс, тогда как диапазон плавной задержки лежит в пределах от 0 до 250 пс с 1 пс инкрементом.
Корректор временной диаграммы, связанный с выходным усилителем, пересинхронизирует данные через триггер D типа для поддержания минимального фазового дрожания. Так как подобный тип тестового устройства обычно используется при проведении лабораторных измерений, выходные уровни синхросигнала и данных и постоянные смещения могут варьироваться для того или иного конкретного случая использования.
Детектор ошибок, показанный на рис. 6.6, имеет простое параллельное соединение, в связи с чем входы синхросигнала и данных проходят через схемы дискретной и плавной задержки, обеспечивая оптимальную настройку при обнаружении ошибок для любой фазы синхросигнала/данных. Действительно, путем настройки под контролем внутреннего процессора решающего порога и фазы синхросигнала условия функционирования детектора ошибок могут быть оптимизированы автоматически. Высокоскоростной демультиплексор преобразует последовательный поток данных в 16-битные параллельные кодовые группы наряду с поделенным на 16 синхросигналом. Параллельно соединенный генератор эталонных тестовых кодов синхронизируется с входными данными и осуществляет сравнение битов, поэтому любая ошибка фиксируется одним из двух счетчиков, первый из которых подсчитывает число ошибок, а второй – общее число битов. Процессор измерения обеспечивает анализ функционирования при наличии ошибок с разрешением до 1 мс.
